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Abstract—We demonstrate SPATIAL, a proof-of-concept sys-
tem that augments modern applications with capabilities to
analyze trustworthy properties of AI models. The practical anal-
ysis of trustworthy properties is key to guaranteeing the safety
of users and overall society when interacting with AI-driven
applications. SPATIAL implements AI dashboards to introduce
human-in-the-loop capabilities for the construction of AI models.
SPATIAL allows different stakeholders to obtain quantifiable
insights that characterize the decision making process of AI.
This information can then be used by the stakeholders to
comprehend possible issues that influence the performance of AI
models, such that the issues can be resolved by human operators.
Through rigorous benchmarks and experiments in a real-world
industrial application, we demonstrate that SPATIAL can easily
augment modern applications with metrics to gauge and monitor
trustworthiness. However, this, in turn, increases the complexity
of developing and maintaining the systems implementing AI.
Our work paves the way towards augmenting modern appli-
cations with trustworthy AI mechanisms and human oversight
approaches.
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I. BACKGROUND AND MOTIVATION

All regulatory and economic frameworks worldwide recog-
nize artificial intelligence as a pivotal technology to support
the functionality of emerging modern applications [1]–[4].
However, challenges such as lack of transparency, resilience,
and accountability have led to the imposition of strict regula-
tions on its usage [5], [6]. The primary goal is to ensure best
practices and minimize risks in developing AI-based software.
Consequently, trustworthy AI has evolved from traditional
trustworthy computing to specifically address the safety of AI
software and responsible societal deployment [7]. Traditional
methods, however, are not directly applicable to AI-based
software. As AI continues to integrate into every aspect of

human life, new methods are required to gauge, adjust, and
monitor the trustworthiness of AI inference capabilities.

Modern applications have evolved from basic client-server
architectures to more complex architectures that incorporate
machine learning (ML) [8] and distributed machine learning,
e.g., Federated Learning (FL) [9]. These system architectures
implement AI pipelines to build models that learn and improve
over time from data contributed by end-users. This allows
for AI-based recommendations and guidance to enhance user
experiences. With emerging regulatory guidelines emphasizing
transparency and requiring greater human control and over-
sight, there is a regained focus on methods like Explainable
AI (XAI). These methods aim to make the workings of AI
more understandable and to integrate human feedback directly
into AI systems. Adopting such approaches is crucial not only
for developing new opportunities and markets but also for
safeguarding the fundamental rights and liberties of individuals
who depend on AI.

In this demonstration, we present SPATIAL [9], a proof-
of-concept system architecture that augments AI components
with mechanisms to gauge and monitor the inference capabili-
ties of AI and its performance in practice. SPATIAL does this
by characterizing AI using different trustworthy properties.
Conceptually, SPATIAL uses AI sensors and dashboards to ab-
stract the complexity [10]. An AI sensor is instrumented within
an application to monitor a specific trustworthy property, e.g.,
fairness, and this results is then shown in the AI dashboard.
Simply put, an AI dashboard shows to users quantifiable met-
rics extracted by AI sensors [10]. Based on this, SPATIAL is
designed following a micro-service pattern architecture in the
back-end, and a dashboard showing the computed results in the
front-end. Through a rigorous evaluation, in which SPATIAL
augments a real-world industrial application, we demonstrate
that AI models can be characterized and their quantifiable
characteristics can be shown to users without introducing much
overhead in existing architectures. We also demonstrate how
human oversight can improve the understanding of users over
AI. However, greater engagement methods are required to
foster the active participation of users. Our work paves the way
towards implementing practical AI trustworthiness in modern



applications.

II. SYSTEM DESIGN AND IMPLEMENTATION

We begin by explaining the augmented software architecture
in which SPATIAL builds upon. After this, we describe the
system implementation and deployment of SPATIAL.

A. Software design
Figure 1 shows the latest design of a modern architecture

implementing distributed machine learning (FL). It is possible
to observe that expected functionality in the architecture is
linked to a design concern, requiring a specific human exper-
tise. From the figure, it is also possible to observe the compo-
nents that SPATIAL uses to augment the architecture [10].
These components implement routines to analyze the AI
algorithm and data used in the construction of machine/deep
learning models (AI models). SPATIAL augments system
architectures with two types of components, one located at
the server side, and other located at the client end.

Fig. 1: SPATIAL software architecture.

AI sensors in SPATIAL: These depict virtual sensors that
monitor and characterize a trustworthy property over time.
Each trustworthy property is linked to an AI sensor. These
sensors are instrumented within the target application whose
trustworthiness is measured. Instrumented as APIs within
applications, these sensors enable the quantification of AI
compliance against available requirements, offering insights
into the model’s compliance with desired specifications. The
key advantage of API instrumentation is that if the function-
ality of an AI sensor requires heavy computation, then the
functionality is outsourced/offloaded to the server.
AI dashboards in SPATIAL: This is a user interface that
enables human oversight in the analysis of AI models, for both
data and AI models after training. The AI dashboards present
all the quantifiable measurements extracted by the AI sensors
to users visually. This allows human experts to collaborate
in overseeing model development and ensuring tuning of the
AI system to address trade-offs in trustworthiness properties
while complying with regulatory requirements.

B. System deployment

Figure 2 shows the deployment of our augmented software
architecture. Next, we provide a detailed description of each
component implementation.

Back-end implementation: SPATIAL follows a micro-service
pattern to estimate AI trustworthiness based on combined
metrics and services. The key idea is that each micro-service
specializes in characterizing a specific, trustworthy property,
e.g., micro-service for fairness, micro-service for privacy.
Micro-service patterns enable easy replacement of metrics for
quantifying trustworthiness. This is beneficial as, currently,
there is a mismatch between legal and technical trustworthi-
ness. Thus, metrics that align better with legal requirements
can be easily updated in SPATIAL. Node.js serves as a foun-
dational runtime environment in our architecture, preceding
the API Gateway. It is employed for building scalable server-
side applications, leveraging its asynchronous, event-driven
programming model to handle concurrent requests efficiently.
We rely on open-source Kong technology for our API gate-
way, which supports easy extensions through OpenAPI and
configurations for continuous integration. The API Gateway
orchestrates communication, ensuring each micro-service re-
ceives the necessary input, processes it, and delivers the correct
response. We used NGINX to define Upstreams and API
addresses in the configuration file to target particular URL
paths to route to the corresponding micro-services. Metrics
and services quantifying trustworthiness as micro-services are
containerized (using Docker) and follow a request/response
scheme. To aggregate metric/service in SPATIAL, a virtual
machine is first created, followed by pushing Docker images
encapsulating all the dependencies and configurations into
the virtual machine. Deployment through Docker containers
simplifies the procedure and provides a standardized, iso-
lated environment, ensuring seamless deployment experiences
across different instances. Our SPATIAL deployment is located
in the High-Performance Computing (HPC) Center [11]. Af-
filiated with the University of Tartu, and part of the LUMI
supercomputer.

Current micro-services include, XAI services (LIME, Oc-
clusssion sensitivity and SHAP), fairness metric over data
using IBM AIF360 that quantifies demographic disparity, net-
work traffic service applying impact and complexity metrics on
AI models, differential privacy service obfuscating data, med-
ical data analysis service implementing visualization methods
for explanations, security diagnosis service implementation
detection methods of model stealing and data poisoning at-
tacks, LLM service implementing Llama LLM for adapting
explanations to specific stakeholder terminology and the ML
component implement traditional training functionality for
different ML algorithms [9], [12].

Front-end implementation: SPATIAL frontend is imple-
mented using React, providing users with an intuitive interface
to seamlessly integrate with SPATIAL features. Node.js serves
as the required runtime environment for React’s develop-
ment tools, including Babel and Webpack. The Bootstrap 5
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framework is utilized for responsive design, while Tailwind
CSS is employed for customized styling, resulting in visually
appealing UI components. Additionally, the SPATIAL client
integrates Okta for identity management, ensuring secure and
robust authentication and authorization capabilities for access
control. For dataset management and responsive chart visual-
ization, we utilize D3.js, Chart.js, and Papaparse for parsing
CSV data.

Fig. 2: SPATIAL system deployment.

III. HUMAN OVERSIGHT: SPATIAL ANALYSIS AND
USAGE

New regulatory requirements to make AI trustworthy and
responsible are transforming the role that humans play when
interacting with AI, and consequently, humans are required
to be involved in the construction process of building, using
and deploying AI models in applications. We next describe
how SPATIAL supports human oversight, its applicability in
a real-word industrial application.

A. SPATIAL usage

Figure 3 shows the overall flow of usage of SPATIAL. First,
a user (aka stakeholder) login into the SPATIAL. Here, the
user can then select the type of stakeholders, such that the
LLM component can adjust the generated explanations from
SPATIAL metrics and services based on the expertise of the
user. In step 1, after the user is logged in, the user can build
AI model using the ML component, see 3.1. To do this, the
user has to upload a dataset or provide a link to retrieve the
dataset. Alternatively, it is possible for the user to upload its
own serialized version of the AI model. Once an AI model is
available, the AI model can be analyzed using SPATIAL back-
end metrics and services. Thus, the AI model is passed to the
AI dashboard. Next is step 2; at this point, both the AI model
and the data will be passed to the respective micro-services
to characterize a specific, trustworthy property (Explainability
and fairness properties are considered in this demo, see 3.2(a)

& 3.2(b)). Each result provided by a micro-service will be
visually presented in the AI dashboard, either as a diagram or
a text explanation. The AI dashboard is used by the user to
understand the quantifiable trustworthy characteristics of the
AI model. After this, the AI dashboard can be used to facilitate
changes on either the AI model or data. In this process, a new
version of the model or data is created, such that changes can
be applied, and SPATIAL can be reapplied in the new versions.
SPATIAL also provides a comparison tool feature, such that
different trustworthy properties from different AI model or
data version can be compared side by side.

B. SPATIAL demonstration in industrial use case

Application: Medical e-calling application: It is a mobile
application, part of an e-calling system, that uses accelerome-
ter data to detect the falling of an elderly person. As the falling
event is detected, the application triggers an emergency call
to request medical assistance.

Dataset: The UniMiB dataset is used to train an AI model that
classifies different types of activities based on accelerometer
data. This dataset serves as a benchmark for human activity
and fall detection, containing 11,771 acceleration samples
from 30 subjects comprising both male and female genders. It
encompasses nine classes representing activities of daily living
(ADL) and eight classes representing falls.

SPATIAL applicability: Since a key trustworthy characteris-
tic is to determine whether the AI model can be used on any
individual, we rely on SPATIAL to perform fairness analysis.
The service performs individual fairness analysis and group
fairness analysis. It then generates results relating to model
consistency in assigning labels to similar instances, class
imbalance, disparate impact, equal opportunity, and equalized
odds. As described previously, to perform this analysis, after
the user has logged into SPATIAL, the user just has to upload
the dataset and then pass it to the AI dashboard and SPATIAL
micro-services are called. Notice that our use case places
emphasis on fairness micro-service for this demonstration, but
other micro-services work in the same manner.

AI dashboard results: Figure 3 also shows the results es-
timated by the fairness component. From the figure, it is
possible to observe that all the results are presented as visually
generated graphs and text explanations. These explanations can
be adjusted based on the type of stakeholder using the latest
advancements in LLM. As a result, it is easy to interpret the
following bias result in figure 3 for the provided datasets. In
one of the fairness analysis results (bottom right), both Age
and Gender features exhibit relatively high consistency metrics
of 0.740 and 0.755, respectively, suggesting consistent treat-
ment across different instances. However, the class imbalance
metric reveals an imbalance in the Age feature (0.505), while
Gender shows a slight imbalance (-0.12), indicating potential
disparities in the Age representation of different groups as
the Age feature favors the majority class while the Gender
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Fig. 3: Overall flow of SPATIAL usage and its applicability (fairness only) over a use case application.

favors the minority class. Furthermore, the disparate impact
input metric for Age (-0.368) and Gender (0.022) indicates
unequal treatment of the groups by the model’s predictions.
Suggesting that one group has an advantage over another in the
model prediction. Disparate prediction input metrics indicate
somewhat similar outcomes, with Age (-0.375) and Gender
(0.03). However, the equal opportunity metric reveals negative
values for Age (-0.075) and positive values for Gender (0.017),
indicating disparities in opportunities for positive outcomes
across different groups as the majority group is more favored.
Finally, fairness score metrics show positive values for Age
(0.375) and Gender (0.030), indicating fair practices with ef-
forts to address bias in disparate impact and equal opportunity.

IV. SUMMARY AND CONCLUSIONS

We demonstrated a working implementation of SPATIAL,
a proof-of-concept system that augments modern applications
with capabilities to analyze and quantify trustworthy aspects
of AI models. SPATIAL uses a micro-service and API gate-
way pattern to combine different methods for analyzing AI
algorithms, its data, and the resulting AI model. SPATIAL also
implements an AI dashboard to show the results of the analysis
to users, introducing human-in-the-loop feedback that can be
used to monitor and tune AI model behavior. Through rigorous
benchmarks and analyses that consider a real-world industrial
application, we demonstrated the performance and scalability
of SPATIAL to perform practical AI trustworthiness.
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