
One to Rule them All: A Study on Requirement
Management Tools for the Development of

Modern AI-based Software
Abdul-Rasheed Ottun∗, Mehrdad Asadi†, Michell Boerger¶, Nikolay Tcholtchev¶,

João Gonçalves∥, Dušan Borovčanin§, Bartlomiej Siniarsk‡, and Huber Flores∗
∗University of Tartu, Estonia

†Vrije Universiteit Brussel, Belgium
‡University College Dublin, Ireland

§MAINFLUX LABS, Serbia
¶Fraunhofer Institute for Open Communication Systems, Germany

∥Erasmus University Rotterdam, The Netherlands
firstname.lastname@{ut.ee, vub.be, ucd.ie, mainflux.com, fokus.fraunhofer.de, eshcc.eur.nl}

Abstract—Modern system architectures are rapidly adopting
AI-based functionality. As a result, new requirements about
software trustworthiness must be considered during the entire
software development life cycle of applications. While several
requirement management tools are available to track and monitor
requirements over time, it is still unknown to what extent these
tools can cope with these new demands imposed by AI. In this
paper, we contribute by performing a qualitative and quantitative
analysis of different requirement management tools and their
performance in managing AI-related requirements effectively.
Through a rigorous analysis performed by a consortium formed
by different industry and academic partners, we evaluate the
suitability of five different requirement management tools. Our
results indicate that while several tools are available for managing
requirements, it is currently challenging to find a tool that can
manage AI requirements mainly because tools do not comply with
the required aspects imposed by regulatory entities. Lastly, we
also shared our lessons learned and experiences from selecting
requirement tools that can be used in team-based consortium
projects.

Index Terms—Requirement Engineering; XAI, AI Applica-
tions; Trustworthy AI

I. INTRODUCTION

Modern system architectures are rapidly adopting AI-based
functionality [1]. Indeed, advanced machine and deep learning
models can improve the usability and performance of the ap-
plications that we use in our daily life activities. For instance,
transportation systems can rely on AI for better navigation of
autonomous vehicles, and healthcare can improve the accuracy
of diagnosis for different diseases using AI [2]–[4]. A major
challenge to integrating AI into the software development life
cycle is that standard pipelines for building AI models can be
easily hampered (through adversarial of situational changes)
at any phase of the model construction [5]–[7], e.g, data
poisoning during data collection. Besides this, the resulting
AI model is black-box, meaning that the logic used to make a

decision is obscured to users. Another important challenge is
to make AI trustworthy for its adoption at scale [8]. Ensuring
that AI is trustworthy requires taking into consideration several
trustworthy properties as early as the conceptual designs
defining the applications conceived. Trustworthy properties of
AI are a set of characteristics that AI requires to be equipped
with, for instance, explainability, interpretability, managing
biases, data governance, privacy enhancement, and safety, to
mention some. Tracking the fulfillment of these characteristics
over time and their changes require the use of specialized
management tools.

Regulations defined for the development of AI-based soft-
ware, e.g., EU GDPR [9] and US AI Executive Order (EO)
13960 [10]; have introduced guiding principles imposing eth-
ical, lawful, and robust considerations for the development
and deployment of AI-based solutions. As early conceptual
and blueprint decisions can influence the fulfilling of these
regulations in practice, trustworthy properties are required to
be considered as early as the requirements collection phase.
Indeed, requirements can be greatly affected due to the sen-
sitivity and privacy of data that is used to train/retrain AI
models. For instance, the use of data in mobile applications
becomes situational, requiring, in some cases, consent from
surrounding individuals to use their data [11]. As requirements
capture private related information from users, this should be
reflected throughout the development process. Likewise, the
type of AI algorithm selected can also influence the post de-
facto verification of AI behavior, making it difficult to assess
characteristics, such as transparency and resilience. Another
example is tracking specifications regarding the resilience of
AI models to the large spectrum of possible attacks that influ-
ence their decision process [12], e.g., model evasion and model
stealing. As a result, the monitoring and tracking of AI require-
ments becomes critical for the auditability of accountability
of developed AI-based software. While there is a large variety
of (open source and off-the-shelf commodity) tools available979-8-3503-2445-7/23/$31.00 ©2023 IEEE

Fig. 1: Conceptual modern software architectures implement-
ing machine learning [1] and set of evolving AI requirements
to be tracked and monitored.

for tracking requirements and monitoring them over time [5],
[13], not all the tool provide flexibility and adaptability to
cope with dynamic changes in data and model characteristics.
More importantly, besides the established regulations, other
stakeholder considerations also become important for the
selection of the management tool as the construction process
of AI may require to apply different internal policies affecting
each involved stakeholder.

We contribute by analyzing the suitability of different re-
quirement management tools. As large software applications
are typically built in large teams, located in different areas
and belonging to different organizations. To evaluate the
effectiveness of different management tools, we conduct the
analysis in the context of an EU Horizon project formed by a
consortium of industry and academic partners located across
different EU and non-EU countries. This analysis is conducted
using the Commercial Off-The-Shelf (COTS) methodology.
By using COTS, we assessed whether popular and off-the-
shelf commercial tools can be used easily to manage and
track the requirements of AI-based software. In this analysis,
five technical partners are selected, where one is appointed
as a coordinator, defining the overall criteria for evaluating
the tool. The coordinator also is responsible for assigning
each partner a tool, such that each individual partner can
evaluate the tool against the criteria. The results of our analysis
demonstrate that new regulations imposed for the development
of AI reduced the pool of options available for handling
requirements. Besides this, our results demonstrate that while
internal policies of organizations may be also a problem
when selecting requirements management tools, it is much
easier to bypass them when compared with rules imposed by
regulatory entities. Lastly, we also share our lessons learned
and experiences from selecting requirement tools that can be
used in team-based consortium projects.

II. BACKGROUND AND RELATED WORK

Requirement management (RM) tools support many re-
quirement engineering processes such as gathering, elicitation,
analysis, and verification within the software development life-

cycle [14]. These tools are typically used to track and monitor
the evolution of requirements during the whole development
process. At the same time, RM tools provide a way to
document and quantify the building process of software appli-
cations [15]. Several studies have categorized different tools
based on their functionalities and features [14], [16], [17]. As
modern system architectures evolve, RM tools also provide
over time new features [18] that are identified by different
stakeholders involved in the development of applications [19],
e.g., software developers and data scientists, among others.

On the other hand, regulatory entities also have intro-
duced new aspects and properties that computing software
has to consider when implementing AI-based functionality.
For instance, as classical software architectures are augmented
to consider new paradigms such as machine and federated
learning [20], new features in RM tools are required that
take into consideration the collection of data at scale. Besides
this, systems and applications implementing AI are required
to adopt trustworthy properties, requiring analysis of other
dimensional aspects of data used for training AI models,
such as fairness and transparency [13]. Indeed, trustworthy AI
depicts a set of trustworthy properties required for computing
programs to be considered trustful [8] and several studies
have identified new types of requirements to consider in these
modern systems [13]. In this work, we revisit the list of
requirements to be considered in AI-based systems, and unlike
others, we analyze whether off-the-shelf RM tools can cope
with these new considerations.

III. EVOLUTION IN SOFTWARE REQUIREMENTS

Classical Software Requirements: Majority of classical soft-
ware requirements focus on providing functional and non-
functional features according to the client’s needs. As shown
in Table I, these requirements ensure that the applications
meet the behavior and contain features required during the
software development process. Functional requirements range
from use case business rules and transactional correctness to
user interfaces that enable the client to achieve a higher user
experience. On the other hand, non-functional requirements are
quality attributes that determine how the system should behave
after deployment. For instance, even if the functionality is as
expected, having poor performance after deployment may lead
to a negative user experience and jeopardize system safety.
Table I describes the classical software requirements in detail.

GDPR and imposed regulations: Europe is leading the
verification of AI-based solutions, such that AI is trustworthy
to users. The General Data Protection Regulations (GDPR)
stipulates the guidelines for dealing with personal data within
the European Union (EU), putting forward fairness, security,
privacy, trust, transparency, and explanation considerations
during software and AI-based solution development. Practi-
cally, the guidelines have compliance implications on data
and software architecture [21], [22] as they obligate these

2

Fig. 2: Evaluation methodology.

Requirement type Feature Description

Functional
Business rules Transactional functions that must be performed in the end product based on user stories

External interfaces API design and accessibility to external APIs
Access control Authentication of end users

Non-functional
Performance Response time of application
Availability Continuous availability of the system for users.
Scaleability Ability to perform as expected under load.

Usability user-friendly and easy to use system.
Security Authorization and resource access control

TABLE I: Generic requirements of applications

considerations for validating and verifying that the software
solutions and systems are rightly and correctly developed [23],
[24]. As a result, software engineers, requirement engineers,
and other practitioners now have to consider a new set of
requirements like data traceability, minimization, rectification,
and erasure, system security, and privacy that have been im-
posed by the regulations as part of system requirements during
the system design and development. Similarly, these principles
are also described in the US AI ACT, and other countries have
also considered similar regulations, for instance, China, Japan,
Brazil, and Canada.

Modern Software Requirements: The inclusion of AI func-
tionality in applications has changed significantly the elicita-
tion of requirements when designing software [1]. As shown in
Figure 1, the current software systems leverage AI (e.g., ma-
chine learning), leading to a revolution in intelligent software
design. Since AI modules within software mainly rely on data,
modern software requirements change accordingly. As shown
in Table II, in addition to current classical software require-
ments, AI-enabled systems raise a set of new requirements
related to data and the internal model logic of AI. For instance,
AI functionality highly relies upon the quantity and quality
of data fed to the system. Moreover, keeping an individual’s
privacy during data collection should be considered by AI-
driven software engineers.

IV. ANALYSIS OF RM TOOLS: METHODOLOGY

Assumptions: The analysis of RM tools is conducted in the
context of a project that aims to design and develop an AI-
based solution. Our project brings together specialists from the
academy and industry to build a software solution that can be
used to analyze AI models running in modern applications.
During the development of our solution, we assume that
each team can access the overall code and contribute to the
development of the application. In addition to this, once a tool
is selected for the joint development of the solution, we also
assume that requirements are tuned over time solely by the
coordinator of the analysis, such that issues about accessing
data by other teams do not infringe our analysis criteria.

Methodology: Our analysis is conducted by relying on the
principles of COTS methodology. Figure 2 describes the over-
all process. By using COTS, we selected a reasonable number
of RM tools and applied clear steps to conduct individual
evaluations of each tool by different teams. To use COTS,
first, we defined specific criteria for establishing the baseline
features for the RM tools to be considered. Subsequently, we
searched to identify relevant RM tools that align with the pre-
defined criteria. Right after, we then systematically assessed
each tool by relying on individual evaluations conducted by
individual teams over assigned tools. Next, we explain the
step-by-step procedure in detail as follows:

3

Requirement type Feature Description

Data
Privacy Keeping private data anonymous
Quality Ensure quality of data before model fitting

Bias-free Completeness of data

Model
Efficiency To perform efficient in terms of energy / time
Robustness To be robust against adversaries

Trustworthiness Transparent, explainable, and accountable AI

System
Resilience Perform as expected in case of circumstance change
Reliability The probability that AI-based system performs correctly for a time period.

Safety Minimize harmful consequences

TABLE II: AI-based application requirements

A. Step 1: Definition of evaluation criteria

After identifying the essential functionalities of our AI-
based application within the context of our project. We adopted
the comprehensive and formal guideline provided by ISO/IEC
TR 24766:2009 [25] framework. The framework enabled us to
understand the mapping of requirement management activities
to the capabilities of any RM tools as the standard is the
classification framework for evaluating relevant features of RM
tools [16]. In addition, this framework availed us with crucial
insights into the specific capabilities that candidate RM tools
should possess. Following that, we established workshops and
discussion sessions to elaborate on other criteria that RM tools
must possess to serve our purpose for effective support of AI-
based application development. Overall, we conducted six (6)
workshops with a duration of forty (40) minutes. These criteria
are defined as follows:

(a) Extensibility: RM tools that are open source and publicly
accessible are relevant to our overall objective. This allows
the development team to modify and extend the code as
needed. Although these tools rely on community production
and peer review, they are often more affordable and flexible
and do not require additional production team costs to manage
requirements. Moreover, this feature helps us to have an
extensibility feature that enables us to adapt the RM tools
and extend them to meet the specific needs of different
stakeholders. Furthermore, the criterion demands that the RM
tools to be considered must have detailed and comprehensible
documentation about object models, interfaces, and API such
that data, requirement artifacts, and functions can be adapted
and extended.

(b) Textual Requirements: Textual requirements are text
statements about the features or functionality of the application
under development. The ability of users to use text is crucial
for RM tools. The needs and expectations of stakeholders
are easily captured by way of text. The captured information
provides the basis for application design and development.

(c) Exportability: Exportability criterion relates to the ability
to export data in different formats. This capability ensures that
users can access and share requirements information outsides
of the RM tool environment with third-party applications or
relevant stakeholders without access to the tools.

(d) GDPR Compatibility: AI-based applications use a lot of
sensitive data as such, compliance with privacy regulations is

crucial for RM tools deployed for managing the requirements
of AI-based applications. RM tools must be designed to
address privacy and data protection concerns and comply
with GDPR and other relevant regulations throughout the
requirement management process and application development
lifecycle. RM tools to consider must possess functionalities
that can guarantee the confidentiality and integrity of sensitive
information. At the basic level, the tools must sufficiently pass
the GDPR principles described in Table IV.
(e) Local Installation: Since it is important to keep the
confidential data of the project on local servers, it is important
to have the tools installed locally and not on outsourced and
untrusted servers.
(f) Requirements Traceability: Traceability of elements is
vital for requirement monitoring. It encompasses the specifi-
cation and the tracking of the relationships between system
elements [31], [32].

B. Step 2: Tools Identification and Selection

In this step, we focused on tool identification and assess-
ment. To identify a suitable set of RM tools, we conducted
a search of available options in the market. We discovered a
variety of RM tools are available with different features and
functionalities. However, considering the time limitations and
the overwhelming number of options, it was impracticable to
assess all the identified tools. Hence, we adopted the COTS
method alongside the criteria defined in Step 1 for selecting
a cross-section of the identified tools for further evaluation of
their capabilities in managing requirements in the context of
AI-based system development.

C. Step 3: Tools evaluation

After several iterations of assessment of identified tools
based on pre-defined criteria, we selected the five (5) tools that
can be adapted for our AI-based application for further evalua-
tion with stakeholders involved in the application development.
Each of the selected tools was evaluated in detail against
the criteria described in Step 2. We randomly distributed the
tools among different project stakeholders and asked them
to evaluate the assigned tool based on the proposed criteria.
The criteria of the evaluation were also explained in detail
to each of the teams assessing the tools. Table III shows the
evaluation outcomes and demonstrates if the tools comply with
the defined criteria.

4

Tools
Criteria OSRMT [26] RMTOO [27] OpenReq [28] Doorstop [29] CAIRIS [30]

Extensibility ✓ ✓ ✓ ✓ ✓
Local Installation ✓ ✗ ✗ ✓ ✓

Traceability ✓ ✗ ✗ ✓ ✓
GDPR Compliance ✗ ✗ ✗ ✗ ✓
Export Capability ✗ ✗ ✓ ✓ ✓

TABLE III: Requirement Management tools criteria.

GDPR Principle Description

Lawfulness, Fairness, and Transparent
Data with privacy properties are processed only if it’s recognized as personal data.

Use cases involving personal data are associated with a necessary goal or requirement.
Purpose Limitation Use cases involving personal data are associated with a necessary goal concerned with that personal data.
Data Minimisation Data with privacy properties are accounted for in processes.

Accuracy Personal data has an Integrity security property.
Storage Limitation Personal data in data stores is processed.

Integrity & Confidentiality Personal information has confidentiality, integrity, and privacy properties that must be preserved.

TABLE IV: GDPR Principles and Descriptions [30].

D. Threats to validity
The criteria for the selection of the RM tools and evaluators

is based on the consortium’s requirement management needs
and the stakeholders, the potential domain experts and practi-
tioners, who are the users of the tool within the context of our
EU Horizon project. There are quite a large number of RM
tools available in the market, not all of which would fit the
peculiarity of our project needs. We then relied on the expertise
and experience of the consortium stakeholders to establish the
criteria for the selection and evaluation of candidate tools
to ensure that the necessary criteria required to meet the
project demands were sufficiently satisfied. To minimize the
potential reactivity threat, where one evaluator’s judgment
could influence another, each team installed the assigned tool
locally and extensively assessed it over a period of three
months. This allows for teams’ independent judgment within
a reasonable period of observation based on the established
criteria. However, we acknowledge the limited generalizability
of our findings due to the relatively small sample of RM tools
considered, the number of evaluators involved, and the specific
evaluation context. Despite these and other limitations, our
evaluation provides valuable insights into our project’s specific
needs and contributes to the understanding of RM tools’ ca-
pabilities in the context of AI-based application development.

V. QUANTITATIVE ANALYSIS OF THE TOOLS

Next, a quantitative analysis is conducted to quantify each
relative aspect that conforms the overall analysis criteria.
Experimental setup: We conducted a survey that captures
the evaluation of each team with its respective assigned
tool. We utilized a questionnaire as the main instrument
for systematically collecting evaluation information about the
specified criteria. We designed our questionnaire following
the standard requirement evaluation questionnaire as presented
in [33], [34], which also follows the ISO/IEC TR 24766:2009
standard, making emphasis in the key aspects defined in our
criteria. Five-point Likert-like Scale response (5: Strongly
Agree, 4: Agree, 3: Cannot say, 2: Disagree, 1: Strongly Dis-
agree) [35] was provided to quantify the questions. Examples

Fig. 3: Evaluation of tools based on defined criteria

of representative questions include, Can we extend the tool
based on the documentation and guidelines?; Please rank the
tool based on the ”Ease of Local Deployment criterion.” and Is
it easy to deploy the tool on our local servers?.

Results: Although most of the tools that we have considered
were open-sourced, we can observe from Figure 4(a) that about
60% of tools have inadequate documentation or have poor
guidelines that result in a low score of ease of extensibility.
Moreover, as shown in Figure 4(b), Local Deployment has
mostly received an agreement of 80% among partners, but
only OpenReq did not comply with this feature, resulting in
a Disagreement of 20%. It is also observable that traceability
was among the features that were considered in most of the

5

tools (40% Agree and 20% Strongly Agree, see Figure 4(c)).
It is also worth noting that RM tools require more attention to
clarify how the tool adheres to the GDPR principles since the
evaluators were not able to analyze this aspect clearly (80%
Neutral - see Figure 4(d)).

Figure 3(a) shows the distribution of scores by RM tools
based on predefined criteria. The figure confirms the results
of Figure 4 and shows how features are ranked for each tool.
From Figure 3(b), it is also observable that CAIRIS achieved
the highest scores of analyzed criteria and, most notably, its
compliance with GDPR because of its rich documentation and
elaboration on GDPR principles. The tools that come next
in rankings are Doorstop and RMTOO. The lower rate to
RMTOO and Doorstop was mainly because of the partners’
Disagreement with their ease of extensibility and GDPR
compliance, resulting from poor documentation and interfaces.
Accordingly, as shown in the figure, OpenReq is the tool
that received the least score, and it is because of the lack
of maintenance since 2019. It seems that the deployment of
the tool on local premises was not easy because of outdated
implementation and was not recommended for further usage in
AI-based application requirement management.Taken together,
our results suggest that CAIRIS provides the most optimal
support for tracking and monitoring the requirements of AI-
based software.

VI. QUALITATIVE ANALYSIS OF THE TOOLS

Each team provided first a qualitative analysis of the as-
signed tool. This analysis contained a description of the tool
and qualitative information regarding how the tool fulfilled the
established criteria.

(a) OSRMT (Team 1): The open-source requirements man-
agement tool (OSRMT) is an open-source requirement man-
agement tool with GNU General Public License version 2.0
(GPLv2). It offers full capabilities for defining and managing
requirements for software development. It can be installed as a
single-user desktop application or a multiple-user application
with a centralized server.
− Extensibility: OSMRT is available free and open to any

user. The tool’s license allows users to use the tool for any
purpose, access the source code and modify it for specific
use. This avails OSMRT with a large community of users
to collaborate and contribute towards its development and
potential for wider adoption.

− Traceability: The tool offers traceability capabilities that
enable users to create relationships between artifacts
and requirements allowing for requirement analysis and
change management. Stakeholders can visualize the trace-
abilities to aid their understanding and decision-making.

− GDPR compliant: Information about the tool’s compli-
ance with General Data Protection Regulation (GDPR) is
not available in its GitHub repository.

− Textual requirement: OSRMT supports textual require-
ments in various forms. Users have the ability to create
and manage five fundamental artifacts as baseline entities:

Features, Requirements, Design Modules, Implementa-
tions, and Test Cases. These artifacts serve as essential
components within the requirements management pro-
cess, enabling effective organization and traceability of
the software development project.

− Exportability: OSMRT allows the export of artifacts to
XML only. However, exporting to another format such as
Excel/CSV, or PDF is not possible.

(b) RMTOO (Team 2): RMTOO is a requirement manage-
ment tool that is implemented in Python and designed to
fully support the Linux operating system. The tool utilizes a
command line interface, which consolidates input and output
operations within a single environment, thus enhancing the
efficiency of requirements handling. While RMTOO primarily
caters to Linux, its implementation in a computer-independent
programming language also enables its usage on other op-
erating systems. Local installation can be accomplished by
employing a virtual machine along with the necessary de-
pendencies, such as Python version 3.5 and above, Latex,
grahpviz, and gnuplot [27].

− Extensibility: RMTOO is available to the public for
use under the GNU General Public License version 3.0
(GPLv3) license, an improved version of GPLv2. This
implies that the license is not restricted only to the codes
but also extends to any hardware or related works that use
the source code of RMTOO. However, the compatibility
of RMTOO is relatively strict due to its license as
GPLv3 adheres to stricter compatibility guidelines which
have an implication on the extensibility of the tool’s
source code to other projects. This necessitates that the
source code can only be combined with projects with
similar licenses i.e. GPLv3 or another compatible license.
Thereby restricting the options for combining RMTOO
with other projects that are without compatible licenses.

− Traceability: Linkage between requirement artifacts is
visually represented using various colors in RMTOO. In
RMTOO, requirement artifacts are distinctly identified
with unique names and connections are color-coded,
providing a visual form of traceability. However, the
specifics regarding how RMTOO implements and facili-
tates traceability cannot be found in its repository [27].

− GDPR compliant: The available documentation and
repository for RMTOO do not provide explicit infor-
mation concerning the privacy and security measures
implemented to protect user data. As a result, the tool’s
compliance with the GDPR cannot be verified or con-
firmed due to the absence of specific details regarding
data privacy practices.

− Textual requirement: RMTOO is a comprehensive text-
based requirement management tool, enabling users to
seamlessly create requirement artifacts using text prompts
throughout the entire process. The tool empowers users
to efficiently generate requirement artifacts by utilizing
text-based inputs, facilitating a streamlined and intuitive
experience for requirement creation. Through its text-

6

based interface, RMTOO ensures that users can effort-
lessly capture, organize, and manage requirements using
textual representations, ensuring clarity and consistency
throughout the requirement management lifecycle.

− Exportability: RMTOO offers versatile output capabili-
ties, allowing users to generate output in multiple file for-
mats, including PDF, HTML, and visualization formats.
Users can leverage this flexibility to select the format
that best suits their needs for sharing and presenting
requirements information. Moreover, RMTOO facilitates
seamless export of the generated output into any of the
supported formats, allowing users to utilize the output in
their preferred format for further analysis, distribution, or
documentation purposes.

(c) OpenReq (Team 3): OpenReq requirement management
tools aim to utilize modern recommender algorithms to de-
velop intelligent recommendation and decision technologies
that support different phases of requirement engineering such
as elicitation, specification, analysis, management, and nego-
tiation. It proposes to function as a support tool that relies
heavily on artificial intelligence (AI) for driving innovative
and efficient requirement management. However, the tool is at
the moment still a prototype that is yet to evolve into a full
fledge finished RM tool.
− Extensibility: OpenReq is an open-source platform,

which means it is freely available and can be customized
and extended to meet specific project needs. The open-
source nature of the platform encourages community con-
tributions, fosters innovation, and allows for continuous
improvement over time.

− Traceability: Information about the traceability func-
tionality of Open Req is not available in the existing
repository and demo [36]

− GDPR compliant: The current prototype has no data
management and protection information.

− Textual requirement: OpenReq possess detailed and
well-developed textual capabilities that enable users to
create, organize, and manage requirement as well as
related artifacts. In addition, the textual capabilities of
the tool support collaboration among stakeholders and
enable the recommender algorithms model to learn and
decision-making.

− Exportability: The tool supports the generation of PDF
output and visualization. However, the exportability of
output is unknown at the moment.

(d) Doorstop (Team 4): Doorstop is essentially a Python
library that helps store and manage textual files with source
code for requirement management control. It requires Python
3.7+ and a version control system for requirements storage.
The library can be installed locally using the pip function in
the terminal and could be accessed via the terminal or imported
in Python script via the import command. The source code is
available on GitHub [37].
− Extensibility: Doorstop is distributed under the GNU

Lesser General Public License (LGPLv3), which implies

a ”weak copyleft” license. This designation indicates
that users are permitted to utilize, distribute, and modify
the library’s code under this license. However, users are
obligated to include a complete copy of the license and
the original copyright notice. In the case of derivative
works, the original source code must be included or made
accessible, and the derived work must be licensed under
the same LGPLv3 license and not previous versions [37].

− Traceability: Every Doorstop file is stored inside the
version control repository. Every file is assigned a unique
name sequentially numbered, allowing easier linking and
historical review.

− GDPR compliant: Doorstop prioritizes security in its
available documentation. However, the documentation did
not provide details about compliance with GDPR.

− Textual requirement: Doorstop facilitates the use of
human-readable text files, for instance, YAML files,
which can be easily interpreted by individuals and ac-
cessed using standard text editors. Furthermore, these text
files can be parsed effortlessly using Python libraries.

− Exportability: Requirement artifacts can be exported for
editing and exchange with other systems in different
formats such as YAML (.yml), Comma-separated Values
(.csv), Tab-separated Values (.tsv), and Microsoft Excel
file (.xlsx). It is also possible to create requirements using
any of the formats.

(e) CAIRIS (Team 5): CAIRIS (Computer Aided Integration
of Requirement and Information Security) is an open-source
platform for eliciting, specifying, and validating secure and
usable systems. CAIRIS was developed by Shamal Faily to
aid designers in integrating security and usability requirements
during applications development [30]. CAIRIS is compatible
with mainstream operating systems, Windows and Linux, and
installable through GitHub, Virtualbox, and Vagrant.

− Extensibility: CAIRIS is available under the GNU Affero
General Public License (AGPL). Under this license, the
tool is modifiable and distributable by users. CAIRIS
source codes are freely accessible. Users can collabora-
tively contribute to development. Being an open-source
tool, the source codes can be reviewed, modified, im-
proved, and regularly updated by a large community of
developers and users. Developers and users can build on
the existing functionalities of CAIRIS and extend them
to suit their distinct needs.

− Local Installation: CAIRIS can be installed on local
servers, desktops, or laptops and supports various oper-
ating systems. Users can install CAIRIS locally through
GitHub, Docker, and Vagrant. Multiple users can install
CAIRIS locally in different locations and can collaborate
on the same project.

− Traceability: In CAIRIS, traceability is automated.
CAIRIS employs the IRIS meta-model to automate trace-
ability and model relationships between elements in the
requirement process. This automated traceability feature

7

Fig. 4: An overview of criteria evaluation among RM tools

simplifies requirement management by allowing users to
identify dependencies and assess the impact of changes
on the application as a whole.

− GDPR compliant: Compliance with data protection
law and privacy principles are important aspects of the
CAIRIS requirement management tool. The developers
of CAIRIS have incorporated model validation checks
for GDPR compliance into CAIRIS. They defined three
new types of roles to CAIRIS (Data Controller, Data
Processor, and Data Subject) and steps for introducing
personal data assets into a CAIRIS model.

− Textual requirement: In CAIRIS, text can be created,
modified, and managed through the tool’s interface.
CAIRIS’ text requirements are stored in the database,
allowing for traceability between text requirements and
other elements, which helps ensure that the application
being developed meets identified needs and expectations.

− Exportability:
CAIRIS has export capabilities that enable users to export
project data in multiple formats like CSV, JSON, PDF,
and XML. In addition, users can also export specific
reports like risk assessments, threats, and vulnerabilities
and share data with external stakeholders. The export
capabilities also serve as means for users to maintain
a backup of their data in a format that can be easily
imported to CAIRIS.

VII. GUIDELINES AND RECOMMENDATIONS

In the light of our analysis, we next define some guidelines
for the selection of tools and provide some general recommen-
dations regarding the expected functionality that new versions
of the tools must include for modern software.

Extendability: Most of the RM tools that comply with the
guidelines and regulations about building AI software are
also open source. While their source code is available online,

extending the tool with certain functionality may require low-
level programming instrumentation and re-compilation of the
source code. This may be a difficult task that can potentially
increase the elicitation process of requirements. Besides this,
instrumenting code may also become a security breach in the
development life cycle.

Supplementary features: Vulnerabilities are weaknesses that
can be exploited to compromise the security of a system.
AI-based systems are susceptible to different attacks. Hence,
the prioritization of risk and vulnerability assessment features
for RM tools dedicated to AI-based systems is required.
The objective of vulnerability assessment during system de-
velopment is to facilitate risk management. The process of
addressing the vulnerabilities entails identifying, assessing,
and prioritizing potential security vulnerabilities [38]. The
process can be challenging for developers. However, deploying
RM tools with risk and vulnerability assessment capabilities
can strengthen and adequately manage the process as part of
the requirement management process during development. For
instance, RM tools such as CAIRIS may be equipped with in-
built functionality that allows users to create a vulnerability
form detailing the name, description, type of vulnerability,
the likelihood of occurrence, impact level, and the exposed
asset. Another key supplementary functionality that RM tools
could improve is concurrent management [39], [40]. Indeed,
RM tools for concurrent or real-time editing by multiple
users working on the same can aid in tuning requirements in
collaborative projects. High resilience to concurrent changes
in requirements can ensure that any changes one user makes
are automatically reflected and updated in real-time across all
user interfaces, irrespective of geographical location.

Maintainability: Several open-source tools lack detailed doc-
umentation, increasing their learning curve. RM tools with
minimal (or non-existent) documentation can delay the process
of defining requirements as the development team first needs to

8

study in detail the functionality of the tool and assess whether
it is suitable for the project or not. RM tools that handle the
requirements of modern applications must clearly define the
level of support to handle AI specifications.
Version control: AI-based applications and systems devel-
opment processes differ significantly from classical applica-
tion development due to a series of iterative activities and
tuning involved in model training for achieving stable and
optimal model performance. It is essential to capture and
track changes in metadata, data, parameters, configuration,
etc, that transpire throughout the development to monitor
different versions of model performance that are observed.
The inability to log, track and trace these changes using a
requirement tool can result in costly consequences. Therefore,
the availability of version control capability is crucial when
selecting requirement management tools for any AI-based
developmental projects.
Data management: Meta-data defines the attributes available
in the dataset and it is expected that RM tools can handle such
descriptor representation for the dataset. Considering that AI-
based systems rely heavily on big amounts of data, it is crucial
to consider also whether the changes on raw data, e.g., new
data contributions, data format; can be also tracked by the RM
tools. Dataset version has a direct link to model version and
its performance.
Deployment: Besides having specific characteristics, it is also
important to re-assess the functionalities of the RM tools once
is deployed for its usage. Indeed, it is possible that vendors
providing the underlying infrastructure to host the tool do not
comply with certain regulations, invalidating completely the
usage of the tool. For instance, a private cloud vendor could
avoid specifying how the replication process is handle with
their cloud technology. For instance, replication just in the
same location (Europe) or to different locations (EU to US).

VIII. DISCUSSION

Room for improvement: While our work provides several
insights on selecting a RM tool for handling AI-based require-
ments, our work is limited in the context of a single project.
Thus, we are interested on replicating our study to other
projects, such that it is possible to generalize our findings.
Besides this, there are several factors that may impact this type
of studies. For instance, the number of teams in a project, and
the amount of resources available to explore the suitability of
a RM tool.
Pre-defined evaluation frameworks: As demonstrated in our
work, selecting a RM tool for AI-based solution development
can pose challenges due to the plethora of available options
which consumes a significant amount of time. However, em-
ploying evaluation frameworks like ISO/IEC TR 24766:2009
and the International Council on Systems Engineering (IN-
COSE) list can potentially assist in navigating the selection
process by offering a comprehensive list of features and
facilitating the comparisons of these features across different
tools. It is important to exercise caution when utilizing these

frameworks, as they serve as a guide and the listed features
should still be evaluated based on the specific requirements of
the development project.

Stakeholder challenges: The complexities involved in ful-
filling stakeholders’ diverse expectations and preferences can
make the selection of RM tools difficult. When developing an
AI-based solution, there are different types of stakeholders to
consider, each with unique needs and priorities. For instance,
stakeholders’ expectations could vary regarding the tool func-
tionalities, user experiences, traceability, report generation,
customization, resource sharing, etc. This diversity makes it
difficult to align the capabilities of the various tools to con-
sider with the stakeholders’ expectations. However, effective
engagement of stakeholders during the tool selection process
can overcome the challenges.

Tool Integration and compatibility: The requirement man-
agement process is not a standalone process in the AI-based
product development processes and other activities. Integrating
the RM tool into existing processes and systems is essential for
effectively managing requirements. Analyzing the compatibil-
ity of the requirement management tool can ensure seamless
integration of the tool into existing systems. Similarly, the
requirement management process should integrate easily with
existing procedures to facilitate efficient exchange of require-
ments data, artifacts, and information among systems and
stakeholders. Hence, considering the fitness of tools in the light
of their integration and compatibility with existing processes
and systems can influence choice-making when selecting a
requirement management tool.

Lessons learned: Several tools in the market are designed
in line with the standard capabilities to handle ISO/IEC TR
24766:2009 requirement definitions. Our assessment of RM
tools for AI-based system development projects reveals that
not all RM tools can effectively support such development
due to some of the unique requirements of the development,
for instance, data privacy and transparency requirements.
Managing the requirements thus requires specific capabilities
that some RM tools lack. Moreover, while standards and
regulations exist to establish the standard capabilities of RM
tools, the standard needs continuous review and update to
adapt to the emerging reality of the integration of AI into
development projects. In addition, projects involving different
stakeholders, such as technical and socio-technical experts,
require to consider selecting an RM tool that can handle the
definition of requirements from specific domain angles and
terminology.

IX. SUMMARY AND CONCLUSIONS

In this paper, we presented a rigorous qualitative and
quantitative analysis of different requirement management
tools. The goal of the analysis was to evaluate whether
existing requirement management tools can cope with the
demands of tracking and monitoring requirements for AI-
based applications, which are subject to specific characteristics
imposed by regulatory entities. The analysis is conducted in

9

the context of a consortium that consists of several academic
and industry partners. By applying the COTS method, five
different tools were assessed, each by one individual partner
from the consortium. Our results suggest that new regulations
make it difficult to find a requirement management tool for
developing AI-based software. We also share our lessons
learned and experiences from selecting requirement tools that
can be used in team-based consortium projects.

ACKNOWLEDGMENT

This research is part of SPATIAL project that has received
funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No.101021808.

REFERENCES

[1] H. Muccini et al., “Software architecture for ml-based systems: what
exists and what lies ahead,” in IEEE/ACM 1st Workshop on AI
Engineering-Software Engineering for AI (WAIN). IEEE, 2021, pp.
121–128.

[2] R. Shah et al., “Iot and ai in healthcare: A systematic literature review.”
Issues in Information Systems, vol. 19, no. 3, 2018.

[3] I. H. Sarker et al., “Ai-driven cybersecurity: an overview, security
intelligence modeling and research directions,” SN Computer Science,
vol. 2, pp. 1–18, 2021.

[4] A. Haydari et al., “Deep reinforcement learning for intelligent trans-
portation systems: A survey,” IEEE Trans. Intell. Transp. Syst, vol. 23,
no. 1, pp. 11–32, 2020.

[5] A. Vogelsang et al., “Requirements engineering for machine learning:
Perspectives from data scientists,” in IEEE 27th International Require-
ments Engineering Conference Workshops (REW). IEEE, 2019, pp.
245–251.

[6] K. Ahmad et al., “What’s up with requirements engineering for artificial
intelligence systems?” in IEEE International Requirements Engineering
Conference (RE), 2021, pp. 1–12.

[7] L. M. Cysneiros et al., “Software transparency as a key requirement for
self-driving cars,” in IEEE 26th international requirements engineering
conference (RE), 2018, pp. 382–387.

[8] J. M. Wing, “Trustworthy ai,” Communications of the ACM, vol. 64,
no. 10, pp. 64–71, 2021.

[9] F. Lagioia et al., “The impact of the general data protection regulation
(gdpr) on artificial intelligence,” 2020.

[10] Cio.gov - executive order (eo) 13960. [On-
line]. Available: https://www.cio.gov/policies-and-priorities/
Executive-Order-13960-AI-Use-Case-Inventories-Reference

[11] C. B. Fernandez et al., “Implementing gdpr for mobile and ubiquitous
computing,” in Proceedings of the 23rd Annual International Workshop
on Mobile Computing Systems and Applications, 2022, pp. 88–94.

[12] W. Shao and X. Wang, “Modeling data requirements for machine
learning systems,” in IEEE 13th International Conference on Software
Engineering and Service Science (ICSESS), 2022, pp. 97–100.

[13] D. Kaur et al., “Requirements for trustworthy artificial intelligence–
a review,” in Advances in Networked-Based Information Systems: The
23rd International Conference on Network-Based Information Systems
(NBiS-2020) 23. Springer, 2021, pp. 105–115.

[14] M. Hoffmann et al., “Requirements for requirements management tools,”
in Proceedings 12th IEEE International Requirements Engineering Con-
ference, 2004. IEEE, 2004, pp. 301–308.

[15] G. Kotonya and I. Sommerville, Requirements engineering: processes
and techniques. Wiley Publishing, 1998.

[16] J. M. C. De Gea, J. Nicolás, J. L. F. Alemán, A. Toval, C. Ebert, and
A. Vizcaı́no, “Requirements engineering tools: Capabilities, survey and
assessment,” Information and Software Technology, vol. 54, no. 10, pp.
1142–1157, 2012.

[17] W. Abbas, W. H. Butt et al., “Systematic literature review on requirement
management tools,” in 2022 International Conference on Emerging
Trends in Smart Technologies (ICETST). IEEE, 2022, pp. 1–6.

[18] A. Finkelstein and W. Emmerich, “The future of requirements man-
agement tools.” Oesterreichische Computer Gesellschaft (Austrian
Computer Society), 2000.

[19] M. Kelanti, J. Hyysalo, P. Kuvaja, M. Oivo, and A. Välimäki, “A case
study of requirements management: Toward transparency in require-
ments management tools,” in Proceedings of the eighth international
conference on software engineering advances (ICSEA 2013), 2013, pp.
597–604.

[20] A.-R. Ottun, P. C. Mane, Z. Yin, S. Paul, M. Liyanage, J. Pridmore,
A. Y. Ding, R. Sharma, P. Nurmi, and H. Flores, “Social-aware federated
learning: Challenges and opportunities in collaborative data training,”
IEEE Internet Computing, 2022.

[21] K. Hjerppe, J. Ruohonen, and V. Leppänen, “The general data protection
regulation: requirements, architectures, and constraints,” in IEEE 27th
International Requirements Engineering Conference (RE), 2019, pp.
265–275.

[22] A. Alhazmi and N. AG Arachchilage, “A serious game design framework
for software developers to put gdpr into practice,” in Proceedings of the
16th International Conference on Availability, Reliability and Security,
2021, pp. 1–6.

[23] H. Li, L. Yu, and W. He, “The impact of gdpr on global technology
development,” pp. 1–6, 2019.

[24] H.-M. Heyn, E. Knauss, A. P. Muhammad, O. Eriksson, J. Linder,
P. Subbiah, S. K. Pradhan, and S. Tungal, “Requirement engineering
challenges for ai-intense systems development,” in IEEE/ACM 1st Work-
shop on AI Engineering-Software Engineering for AI (WAIN), 2021, pp.
89–96.

[25] ISO/IEC, “Information technology – systems and software engineering
– guide for requirements engineering tool capabilities,” 2009, first ed.
2009.

[26] A. Smith, “Open source requirements management tool,,” https://github.
com/osrmt/osrmt, 2019.

[27] A. Florath, “rmtoo – requirements management tool,” https://github.com/
florath/rmtoo, 2020.

[28] A. Felfernig et al., “Openreq: recommender systems in requirements
engineering,” in Proceedings of the Workshop Papers of I-Know 2017:
Co-Located with International Conference on Knowledge Technologies
and Data-Driven Business 2017 (I-Know 2017): Graz, Austria, October
11-12, 2017, 2017, pp. 1–4.

[29] J. Browning and R. Adams, “Doorstop: text-based requirements man-
agement using version control,” 2014.

[30] S. Faily and D. Ki-Aries, “Usable and secure requirements engineering
with cairis,” in 2019 IEEE 27th International Requirements Engineering
Conference (RE). IEEE, 2019, pp. 502–503.

[31] O. C. Gotel and C. Finkelstein, “An analysis of the requirements
traceability problem,” in Proceedings of IEEE international conference
on requirements engineering. IEEE, 1994, pp. 94–101.

[32] A. Shah et al., “An evaluation of software requirements tools,” in Eighth
International Conference on Intelligent Computing and Information
Systems (ICICIS), 2017, pp. 278–283.

[33] d. G. J. M. Carrillo et al., “Commonalities and differences between
requirements engineering tools: A quantitative approach,” Computer
Science and Information Systems, vol. 12, no. 1, pp. 257–288, 2015.

[34] Commonalities and differences between requirements engineering tools:
A quantitative approach. Accessed on 17 November 2023. [Online].
Available: https://www.um.es/giisw/EN/re-tools-survey/part2.pdf

[35] T. Nemoto and D. Beglar, “Likert-scale questionnaires,” in JALT 2013
conference proceedings, 2014, pp. 1–8.

[36] V. Biryuk, “Openreq,” https://https://github.com/orgs/OpenReqEU/
repositories?page=2&type=all, 2019.

[37] J. Browning and R. Adams, “Doorstop,” https://github.com/
doorstop-dev/doorstop, 2014.

[38] S. Faily and S. Faily, “Usable and secure software design: The state-of-
the-art,” Designing Usable and Secure Software with IRIS and CAIRIS,
pp. 9–53, 2018.

[39] D. Damian et al., “Awareness meets requirements management: aware-
ness needs in global software development,” in Proc. of the Int’l
Workshop on Global Software Development, International Conference
on Software Engineering (ICSE 2003), 2003.

[40] M.-A. D. Storey et al., “On the use of visualization to support awareness
of human activities in software development: a survey and a framework,”
in Proceedings of the ACM symposium on Software visualization, 2005,
pp. 193–202.

10

