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ABSTRACT
We contribute by presenting a framework that re-purposes off-the-
shelf and low-cost components into integrated solutions that are
easy to scale and deploy in the wild. We demonstrate the applicabil-
ity of our framework in the context of produce quality estimation to
advance the digital transformation of existing agricultural practices.
The deployment of off-the-shelf technologies is critical to foster its
large-scale adoption and to accelerate the automation of human
manual activities. Through rigorous experiments using our pro-
posed framework, first we demonstrate that individual off-the-shelf
light sensors (in three different spectra, green, red and blue) can
be easily re-purposed for produce quality estimation, and that this
monitoring solution can be further integrated into off-the-shelf
nano-drones to support dynamic produce quality estimation at dif-
ferent altitudes without degrading its estimation performance. Our
work paves the way towards practical guidelines that can be used
to assemble complex off-the-shelf components in a plug and play
fashion.
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1 INTRODUCTION
Agricultural practices commonly involve considerable amounts of
hand work and constant human supervision. For instance, skilled
visual inspection from humans is important to estimate the quality
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of growing produce, such that early diseases and defects can be
identified [32]. Improving agricultural practices is critical for sus-
taining the growing world population, which is expected to increase
from 7.3 billion to 9.7 billion people by 2050. A way to achieve this
is to embrace the adoption of digital technologies in agriculture
practices. Indeed, monitoring solutions enabled by IoT (Internet
of Things), and pervasive and ubiquitous technologies can aid in
providing more precise, efficient and sustainable quality control
for growing produce. This directly translates into better and high
quality organic products offered in retail stores to end-customers.
While there is a large variety of monitoring solutions to monitor the
quality of produce at different stages of the food supply chain [23],
a major limitation of those is that they are difficult to scale up [34].
In practice, growing produce in an open field requires the installa-
tion of cameras and the establishment of a dedicated infrastructure
to enable continuous monitoring [16]. This constraint the amount
of produce in the field and introduces higher complexity in its
maintainability. As a result, new innovative methods that foster
deployments at scale are required.

Existing methods to improve agriculture practices are diverse,
mostly requiring a static deployment of specialized infrastructure to
support its monitoring. Sensor deployments to monitor the quality
of soil have been investigated [21]. Camera-based methods have
been explored extensively to support the detection of diseases, de-
formations and abnormalities caused by the environment as the
produce grows [16]. Manufacturing equipment has been integrated
with sensors, e.g., thermal cameras, to separate and rank the quality
of produce, before dispatching to retailers. A key limitation of these
methods is that it is difficult to scale them. Indeed, computer vision
methods are power hungry and cannot be executed in constrained
devices for running continuously [3]. Their performance also de-
pends largely on the characteristics of the data collected. Besides
this, these solutions also required a fixed deployment and special-
ized hardware, which is bulky and costly. Realizing the vision of
digital agriculture at scale requires easy to use technologies that
can operate without heavy requirements on processing power and
data. At the same time, these technologies should be low-cost to
foster large-scale adaptation.

In this paper, we investigate a practical framework that can be
used to re-purpose and combine off-the-shelf components (in a play
and plug fashion) to support the digital transformation of agricul-
ture. By following the guidelines provided by our framework, we
then design a fully off-the-shelf monitoring solution that can be
used to estimate the quality of produce. Our monitoring solution
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is built by re-purposing of inexpensive light sensors (three differ-
ent spectra, green, blue and red) which are also small in size and
lightweight to embed anywhere. Moreover, to make our solutions
scalable, we analyze how autonomous devices can be augmented
with light sensors, such that it is possible to support dynamic de-
ployments that are not tied to a specific fixed location. While there
is work that has attempted to augment autonomous vehicles, e.g.,
AGV, UAVs; with cameras to support agriculture practices, in our
work, we take a step further by investigating how off-the-shelf and
miniaturized autonomous vehicles (aka nano-drones) can support
produce quality estimation. Through rigorous evaluation that con-
siders different produce (fruits and vegetables), our work shows that
by re-purposing off-the-shelf technologies and combining them, it
is possible to support flexible and scalable solutions that can aid
current practices of produce quality monitoring.

Summary of Contributions
• Off-the-shelf re-purposing We design a monitoring so-
lution to estimate produce quality using off-the-shelf and
low-cost components.

• Robust estimationWe demonstrate that our solution can
monitor a wide range of different produce and generalizes
to both, fruits and vegetables.

• New insights.Weperform rigorous benchmarks that demon-
strates that it is possible to estimate produce quality robustly
even in the presence of high motion caused by operational
navigation of the nano-drones.

2 MOTIVATION
There is a wide range of computer vision methods that can evalu-
ate the quality of produce, either fruits or vegetables. We start by
demonstrating that while these methods can detect abnormalities
in a variety of vegetables, there are a number of challenges and
requirements that prevent these methods to be adopted at scale. We
demonstrate this by analyzing a representative application, where
computer vision methods are used to detect common diseases that
affect produce at any stage of its life cycle.
Dataset:We rely on the PlantVillage dataset [14], which contains
samples from common produce that is grown in farms, e.g., toma-
toes, potatoes, and spinach to mention some. The dataset comprises
54303 images of 38 classes, containing baseline images of high qual-
ity produce and samples from produce affected by different diseases.
Sample images are split into 80/10/10 train, validation and test splits
respectively. We applied well-known augmentation techniques to
our samples to increase the size(horizontal & vertical flips, and
brightness) on train and validation splits[33], resulting in around
87K images available to train machine learning algorithms.
Methodology: After our dataset is prepared for training, we next
trained two CNN-based models: MobileNetV2 and InceptionV3.
These models are selected as their performance have been reported
by other work [36], making it suitable to replication. Both models
were trained for 10 epochs, and the performance of the models is
evaluated using different configurations, 1) training all layers from
scratch; 2) training all layers from pretrained weights on ImageNet
and 3) fine tuning the last linear layers from pretrained weights

on ImageNet. We analyzed these configurations to have a robust
characterization of performance for both models.
Results: Our results indicate that models trained with InceptionV3
generally performs better than models trained with ImageNetV2,
suggesting that while InceptionV3 resulting models are more ad-
vanced for prediction, those require higher demand on (storage
space) resources when compared with MobileNetV2 models, mak-
ing them less suitable for constrained devices. Table 1 shows the
performance of both models and compares the accuracy to detect
diseases with different adopted configurations. The highest accu-
racy is achieved for configuration 3 that involves fine tuning of
pretrained layers, this configuration also shows to be lighter in
terms of resource requirements when compared to the others.

Model Model Size (MB) Configuration 1 Configuration 2 Configuration 3

MobileNetV2 14 0.151 0.601 0.955
InceptionV3 92 0.738 0.865 0.951

Total Average 0.4445 0.733 0.953

Table 1: Comparison of models and configurations.

Insights: Advanced machine learning models can be used to detect
abnormalities in produce. However, the models that perform the
best are typically pretrained suggesting that the overall pipeline and
data collection cannot be handled by constrained devices. While
these devices can connect to remote (Cloud-Edge-Fog) infrastruc-
ture to offload processing, this introduces higher complexity in the
deployment of monitoring solutions as it becomes dependent on
connectivity and availability of remote resources. Hence, existing
methods can be easily used to monitor produce quality, however,
its deployment in practice is difficult. Thus, solutions cannot be
easily deployed nor scaled.

3 OFF-THE-SHELF PERVASIVE
AGRICULTURE: PRACTICAL GUIDELINES

A key challenge for the digital transformation of agricultural prac-
tices is its large-scale deployment. Indeed, while existing monitor-
ing solutions for agriculture have reached a good enough perfor-
mance, their deployment and usage in practice requires consider-
able effort and large amounts of human involvement. In the fol-
lowing, we start by describing our vision for digital transformation
of agriculture. After this, we describe the process of re-purposing
off-the-shelf devices. With this information, we then show that
while individual re-purposing is feasible, the integration of differ-
ent off-the-shelf components is challenging, requiring to assess
different characteristics of the components before re-purposing.
We thus propose a framework that can aid in the integration of
off-the-shelf components for practical use.
Vision: Our vision for large-scale produce quality estimation us-
ing off-the-shelf components is shown in Figure 1. In our vision,
off-the-shelf nano-drones are equipped with sensing devices that
are lightweight, such that they can be deployed and powered by
constrained devices. Nano-drones are low-cost, have low energy
footprint and their small size makes it suitable to operate and ma-
neuver with flexibly and ease. Nano-drones can perform produce
quality estimation in open fields or indoors such as greenhouses.
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Figure 1: Vision of off-the-shelf sensors and nano-drones for
produce quality estimation at scale.

Since nano-drones are equipped with all the required monitoring
functionality, the deployment is dynamic and not linked to static
infrastructure. Another benefit of using this solution is that moni-
toring is not tied to a specific view or angle, instead, nano-drones
can explore and sample different vertical column heights, making
it suitable for a wide range of produce at different altitudes, e.g.,
avocado vs tomatoes. Moreover, the complexity of performing pro-
duce quality monitoring can be reduced dynamically based on the
number of flying nano-drones that are deployed.
Practical framework: Our proposed framework is shown in Fig-
ure 2 and consists of three phases, 1) off-the-shelf component selec-
tion; 2) off-the-shelf re-purposing and 3) off-the-shelf integration.
Our framework provides general practices and steps that can be
followed to build solutions with heterogeneous components. We
next describe each of the phases in detail.
Off-the-shelf component selection: In the first phase, objectives
of the application to be designed are stated along with the defi-
nition of the task. With this information, it is possible to identify
available off-the-shelf components to define a comprehensive pool
of different technologies that can be used. Generally, off-the-shelf
components are ranked based on their flexible usage and available
tools to configure and develop applications on them, e.g., APIs, IDEs,
to mention some. Another key aspect that is considered is the cost
of the components and availability in the market. Components that
are approaching obsolescence are not taken into account, as replac-
ing such components could necessitate restarting the entire process
of integrating off-the-shelf components. As different factors can in-
fluence the selection of an off-the-shelf component, our framework
defines a list of factors, which can be used to filter off-the-shelf
components. This set of factors depends on the characteristics of
the applications that is being developed, requiring an individual
using the framework to select the most relevant factors that he
or she considers important for their prototyping. Currently, our
framework defines factors for energy consumption, physical dimen-
sions, weight and sensor re-purposing complexity. The outcome
of this phase is a set of off-the-shelf candidate devices that can be
integrated.
Off-the-shelf re-purposing: Once off-the-shelf candidate compo-
nents are selected, the second phase involves to apply re-purposing
approaches on the type of sensor/device considered for the task.
There are plenty of methods that can be used to re-purpose sen-
sors [28, 41]. Different sensors could be considered to achieve the
same by slightly applying different re-purposing method. For in-
stance, produce quality estimation can be achieved by re-purposing
light-sensors [47], wireless sensors [24] and thermal imaging [11].

Figure 2: Framework to re-purpose [25, 38, 47] and inte-
grate [45] off-the-shelf components. (a) Off-the-shelf compo-
nent selection (b) Re-purposing approach requiring 2 steps
(c) Performance analysis of integrated solution

Similarly, to this, the re-purposing of autonomous drones also has
been investigated by analyzing the impact of augmenting the ve-
hicles with sensors and computing power on demand [25]. In this
re-purposing phase, the performance of each off-the-shelf com-
ponent is also evaluated. This is key to derive an initial insight
into the design dimensions of the integrated prototype to be con-
structed. Our framework defines an iterative down-to-top design
approach [45], meaning that after off-the-shelf components are
re-purposed (step 1), those are stacked incrementally in a plug and
play fashion to achieve augmented functionality in each iteration
(step 2). This iteration integration loop is finalized once the inte-
grated prototype, either is equipped with all the functionality or
an off-the-shelf component cannot be integrated nor re-purposed,
requiring to restart the overall framework from the scratch.
Off-the-shelf benchmark and deployment: Lastly, in this phase,
rigorous benchmarks are conducted to analyze the performance
of the integrated solution prior to its deployment in the wild. Key
metrics under scrutiny include accuracy, energy efficiency, and
reliability, all crucial in real-world deployment scenarios. Based
on benchmark results, calibration and optimization efforts may
warrant fine-tuning the integrated solution. This process aims to
rectify performance gaps, ensuring alignment with our objectives.
Additionally, the feasibility of introducing supplementary infras-
tructure to enhance the integrated solution’s overall performance
can be explored. For example, this may involve deploying edge
servers or establishing battery charging stations.

4 THE EXPERIMENTS
4.1 Light re-purposing for produce quality

estimation
Re-purposing: Existing work has re-purposed light sensors (in
the green spectrum) to estimate quality of produce [8]. We take
this idea further by replicating and re-purposing additional light
spectrum sources. In particular, we focus on RGB (Red, Green, Blue)
light sources as those can be commonly found in off-the-shelf de-
vices and rapid prototyping IoT devices. The key idea of using light
sensors is to measure changes in the surface of the producing using
the principle of light reflectivity [47]. As the wavelength of each
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sources influences these reflectivity patterns, it may be the some
light sources are more suited for specific conditions and situations.
We next describe the design of the experiments used to evaluate our
framework. We conduct experiments to first characterize the per-
formance of individual off-the-shelf technologies, and subsequently,
we conduct experiments to evaluate the performance of the overall
integrated solution. Since a number of differences exist between
fruits and vegetables, e.g., latitude and superficial thickness [26],
our experiments analyze each separately, demonstrating that the
usage of light sensors can be generalized.
Apparatus: Cathode RGB (Red/Green/Blue) LED sensors along
with a photo-resistor are used as light sources. The photo-resistor
measures (5MΩ) intensity of reflected light. Light measurements are
collected by attaching these sensors to a M5StickC PLUS , powered
by ESP32 with Bluetooth 4.0 and WiFi. The board obtains obtained
measurements at a sampling frequency (5Hz), and send the recorded
light values to a server with the timestamp for each record. Each
light sensor+photoresistor combination has has cost of around
5 EUR, and the M5StickC PLUS costs around 20 EUR, altogether
making it low-cost for rapid prototyping.

4.1.1 Fruits.

Produce: We consider five different fresh produce that are com-
monly available in a supermarket and that cover all 5 main cate-
gories of produce identified in the literature: pepo (melon), pome
(pear), berry (banana), drupe (mango) and hesperidium (lemon).
Since it has been demonstrated that light reflectivity can capture
decomposition of produce over time [47], one unit per fruits is
considered, and we first focus on replicating the reported results
with green light. After that, we focus on analyzing the performance
of blue and red light under the same conditions. Measurements
with the three sensors (RBG) are taken during 8 consecutive days.
Testbed: A controlled testbed is setup for obtaining the measure-
ments with the sensors. The testbed design is shown in Figure 3
and consists in a black surface with strategically placed markers for
positioning the test samples consistently across the experiments.
This arrangement guarantees uniform assessment across all sam-
ples, eliminating variability stemming from location discrepancies.
Additionally, the use of a dark background mitigates potential inter-
ference from background reflections, thus enhancing the accuracy
of the measurements. Each sampled fruit is then placed 1 centime-
ter away from the light sensor. We also measure the ambient light
of the environment where the experiment is conducted. The light
intensity is measured using a LUX light meter application running
in a smartphone device. Notice also that the ambient light source
is located right on top of the testbed, such that it is possible to
resemble daytime scenarios.
Procedure: Each sample is located in a basket and then selected
randomly in each day. The fruit is located in the testbed in the
position indicated by the markers. One minute measurements are
taken with each sensor. The angle of the sensor and the surface
of the fruit is perpendicular and fixed for all measurements. Once
the fruit has been positioned according to the marked position, the
light sensor collects light intensity data from various locations on
the fruit’s surface. First, measurements are taken with red light,
then the same procedure is repeated with green and finally with

blue light. The researcher achieves this by rotating the fruit to 8
different positions, ensuring randomness in the selection of spots.
Additionally, the lux application meter, is used to record the sur-
rounding light conditions during each measurement. This collected
data is then logged for each individual sample over the course of
the experiment, for continuous period of 8 days.

4.1.2 Vegetables.

Wealso conduct experiments tomeasure the performance of light
sensors to capture decomposition in vegetables. A key difference
between fruits and vegetables is that vegetables are edible from
different parts of the plant, e.g., leaves and roots, while fruits are
edible just from the flowering part [15]. This then suggests that
vegetables may present more deformities on their surfaces, e.g.,
leaves, making it difficult to characterize the decomposition process.
Produce: A set of fresh vegetables commonly available at retail
stores is considered for the experiment. Our selection covers the
following five categories of vegetables: leaves (cabbage and spinach),
stem (celery), fruits (tomato), pods (bean) and flowers (cauliflower).
Since the performance of light sensors on vegetables have not been
analyze previously, we selected multiple units of produce per each
category. Thus, for each category of vegetable we had 2 samples,
(Sample-1 and Sample-2), these two samples are selected to reduce
the impact of outliers or random variations, making the findings
more reliable and generalizable. The experiment was conducted for
a period of 12 days.
Testbed:We rely on the same testbed design used for our previous
fruit experiment. In addition to this, to measure a reference baseline
for decomposition for vegetables, we also took measurements with
a durometer, which measures firmness of the vegetables over time.
We also measure temperature of the ambient as temperature can
affect the rate of the decomposition [22].
Procedure: We employed the same procedure from the fruit ex-
periments for the vegetable produce also the baseline durometer
readings was after each measurement to quantify the firmness.
However data was collected for this experiment for the definitive
12 days with ambient temperature values recorded for each day.

4.2 Nano-drone re-purposing for produce
quality estimation

To analyze the integration of different off-the-shelf components
using our framework, We then analyze the performance of light
sensors as they are integrated into autonomous (nano) vehicles.
Re-purposing: We next proceed to re-purpose the nano-drone,
such that it can be equipped with the light sensors and its respective
computing units. To re-purpose the nano-drone, we analyze two
payload conditions, the first condition focus on characterizing the
off-the-shelf operations of the nano-drone without embedding any
sensor (no-payload). After that, light sensors are embedded, and a
second condition is then evaluated. In this condition, the perfor-
mance of the nano-drone is measured as light sensors are embedded
on it (with-payload). Besides measuring the overhead introduced
to the nano-drone, we also benchmark the optimal location in the
nano-drone for embedding the sensor. Indeed, the sensor cannot
be attached in any random position as it can cause the nano-drone
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Figure 3: Testbeds design; a) Re-purposing of light sensors;
b) Re-purposing of nano-drone

to lose its stability, causing operational collapse and inability to
navigate correctly.
Apparatus: A commercial off-the-shelf nano-drone Loolinn U61
FPV is used for the prototype. The nano-drone is equipped with
the apparatus described previously for produce quality estimation
of fruits and vegetables. Nano-drone device has a cost of around 20
EUR. The overall cost of the integrated solution is less than 50 EUR.
Produce: We opt to rely on an identical set of fruit samples that
we previously used for investigating the light sensors. This deci-
sion was made to ensure consistency and to facilitate the potential
comparison of our results with those obtained previously.
Testbed:We set up a controlled design for obtaining results from
our prototype design. We marked a spot where we can hang the
fruit samples with the aid of cellophane transparent tapes. The
testbed area was well illuminated with light while we strategically
made sure each fruit sample is always at an elevation of 2 meters
above the ground level to simulate natural growth environment of
the fruits that is typically challenging for human access. We also
took measurements of the ambient light and temperatures of the
environment ascertain if they affect the rate of decomposition of
the fruits. Figure 3(b) shows the typical testbed design.
Procedure:We conduct flights with our nano-drone, equipped with
the light sensor (red light because of its longer wavelength), flying
in close proximity to the fruit. The researcher/operator managed the
distance between the nano-drone and the fruit sample to prevent
any collisions with the fruit samples. This was carried out using
the testbed area with each flight lasting approximately 30 seconds.
The experimental prototype underwent a total of 10 flight trials,
around the different fruit samples. During each flight, data on light
intensity, ambient light and temperatures were collected in a similar
manner to the method used when using the light sensor in isolation.

5 RESULTS
Light performance on fruits: Figure 4(a) shows the result of using
green light, which matches the results reported from the literature.
In addition to this, Figure 5(a) and (c) shows the re-purposing of red
and blue lights for produce quality monitoring. From the results,
we can observe that any light source can capture the decomposition
of produce. Statistical analysis, including Kruskal-Wallis tests, indi-
cated significant differences among various fruit groups for blue,
green, and red light colors. Specifically, red and green lights sensing

(a) (b)

Figure 4: Green light characterization ;(a) Light values across
decomposition period (b) Light variation across two periods

yielded good results (Blue: 𝜒2 = 45.72, 𝜂2 = 0.61, 𝑝 < .05, Green:
𝜒2 = 38.30, 𝜂2 = 0.52, 𝑝 < .05, and Red: 𝜒2 = 46.29, 𝜂2 = 0.63,
𝑝 < .05). Pairwise post-hoc comparisons (Dunn-Bonferroni) further
confirmed distinctions, while acknowledging specific cases with
limitations. In parallel to this, Figure 5(b) and (d) show the Mean
Absolute Deviation (MAD) of light values, highlighted differences
under same ambient conditions. Wilcoxon-signed rank tests be-
tween two periods (days 1-4 and days 5-8) revealed statistically
significant differences in light values for most fruits, except for
blue light sensing. This potentially suggests that blue light sensing
can characterize types of fruits, but not very reliable to capture
their decomposition. At the same time, Figure 5(a) shows better
performance of red light when compared with green light (Red:
𝑍 = 739, 𝑟 = 0.69, 𝑝 < .05; Green: 𝑍 = 687, 𝑟 = 0.69, 𝑝 < .05), indi-
cating that red light is more suitable for both, fruit characterization
and monitoring of fruit decomposition.
Light performance on vegetables: We next demonstrate the per-
formance of different light sources for characterizing vegetables and
monitoring their decay. As noted before, there are drastic superficial
differences between fruits and vegetables. Thus, the generalization
of the method for any type of produce is critical for having a ro-
bust solution. Figure 6 displays the median and standard deviation
(SD) of ripe (days 1-6) and decay (days 7-12) stages for each veg-
etable item in two different day intervals, distinguishing between
sample-1 and sample-2 for blue light. This result further supports
the effectiveness of using different light colors’ reflectivity values
to accurately estimate the quality of vegetables. Kruskal-Wallis test
confirms the differences to be significant between various vegeta-
bles (Blue: 𝜒2 = 73306, 𝜂2 = 0.82, 𝑝 < .05, Green: 𝜒2 = 76754,
𝜂2 = 0.85, 𝑝 < .05, and Red: 𝜒2 = 67493, 𝜂2 = 0.75, 𝑝 < .05). These
variations constitute unique fingerprints that allow to determine
the vegetable type irrespective of samples. Given the observations
of vegetable items from red, green and blue light sensors for both
sample groups, light reflectivity pattern and 12-day long time span,
it appears that blue light is most appropriate for conducting indi-
vidual analysis. In addition, Figure 7 demonstrates the blue light
median values with a 95% confidence interval (CI) of sample-1 and
sample-2 for each day over the 12-day decomposition period. The
ability of blue light reflectivity to capture produce quality is then
assessed independently for the vegetable items.
Payload performance of nano-drone: We start by observing
the overall operational behavior of the nano-drone. Without any
extra payload, it was observed that the nano-drone was able to
remain stable for a period of time, but as the battery was drained
(aka low energy available), landing policies were triggered and the
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(a) (b) (c) (d)

Figure 5: Red and Blue light characterizations; (a) Red light values (b) Red light variation across two periods (c) Blue light
values (d) Blue light variation across two periods

(a) Blue light (b) Durometer

Figure 6: Light characterization for vegetable; (a)Two-stage
median + SD light values (b) Average durometer readings

Figure 7: Blue light Day-wise median + 95% CI light values

nano-drone tend to collapse spontaneously. Figure 8 shows further
results of our experiment with and without payload. The nano-
drone and the light sensor were found to have weights of 62 g and
24 g, respectively. The total operational time of the nano-drone
without the light sensor was recorded as 6.58 minutes, and it could
be controlled at different altitudes; however, when the time ran
down to 1.13 minutes, the nano-drone was unable to remain stable
flying in the air. Similarly, when the light sensor was mounted on
the nano-drone, the total operational time dropped to 4.15 minutes.
This means that the extra payload reduced the usage of the nano-
drone by 2 minutes. At the same time, when the time ran down to
2.04 minutes, the nano-drone loss its stability. This indicates that
the extra weight not only reduce the operational time, but it also
influenced the overall landing policies by accelerating them. The
overall process is depicted in Figure 8(b).
Light performance during flying motion: Next, we evaluate
the performance of light as the sensors are integrated into nano-
drones. Figure 9 show the results. From the figure, it is possible to
observe significant variations when employing the light sensor cou-
pled with the nano-drone prototype. Indeed, light measurements

Figure 8: Nano-drone re-purposing; a) Nano-drone and light
sensor prototype; b) Nano-drone operational flight time.

Figure 9: Nano-drone repurposed prototype (a) Light values
from nanodrone (b) Light variation across periods.

tend to have more variations due to the flying motion of the nano-
drone. However, it is still possible to observe accuracy characteri-
zation and identification of decay when using red light as a source.
Kruskal-Wallis test indicate significant differences (𝜒2 = 27.87,
𝜂2 = 0.53, 𝑝 < .05) for the whole analysis period. This indicates
that by re-purposing individual off-the-shelf components and inte-
grating them into a single combined solution, it is still possible to
monitor produce quality. All in all, while our integrated nano-drone
with light sensors can be used for both, fruits and vegetables, our
results indicate that the solution may be more suitable for fruits.
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6 RELATEDWORK
Produce quality estimation: Produce quality estimation has pre-
dominantly been a manual human task. This approach is inefficient,
laborious, and not suitable for large-scale quality estimation. Be-
sides, it is also subjective and highly susceptible to error, causing
inconsistencies in quality evaluation [32]. In recent times, other
methods have been explored. For instance, the spectral imaging
method; While this method reveals the innermost attribute of pro-
duce for estimating quality, it relies on specialized equipment and
high-level data analysis know-how[44]. Similarly, the computer
vision-based approach employs visual data to estimate quality, but
it remains vulnerable to changes in environmental conditions like
light variations and adverse weather conditions (such as rain and
fog) [7]. Other methods like thermal imaging, wireless signals [13],
and NIR spectroscopy [18] are non-invasive, but they need special-
ized tools and technical expertise and can be limited by calibration.
Our work relies on the simple principle of light absorption and
reflection for estimating produce quality. We combine the off-the-
shelf red, green, and blue light of the light spectrum for collecting
light values of produce, which is then used to characterize the
quality of produce.
Drones and AGV for produce quality: The desire to reduce the
risk involved in agricultural process and increase farm productivity
and quality are driving the integration of drones and autonomous
ground vehicles (AGV) into farming operations [5, 30]. They are
leveraged for agricultural field and crop monitoring [31] and other
purposes during different phases of agricultural activities. Prior to
commencing planting, drones and AGV can be utilized for regular
data collection to support pre-farming activities for bolstering high
produce quality. For instance, drones and AGV are used for soil
sampling (field) for collecting data that can be used to understand
soil topography, nutrient level and manage irrigation for optimal
planting[35]. Moreover, they can be instrumented for specialized
functionality to preserve the quality of produce during planting and
harvesting such that they can be utilized for seeds dissemination
[46], control of dispensation of fertilizers and nutrients [19], pest
and disease management[40], and crop maturity monitoring[4, 31].
Pervasive sensing: Sensor technology and network infrastructure
advancements have paved the way for extensive data collection
using lightweight devices. In agriculture, a diverse range of sensors,
including imaging sensors like cameras, wifi, light, thermometers,
accelerometers, magnetometers, and humidity sensors, have been
successfully deployed to gather data. These sensors function within
the agricultural domain, capturing real-time data that provides valu-
able insights into resource utilization, field productivity, crop health,
and livestock behavior. Image sensors encompass various types of
cameras, such as multispectral cameras [27], hyperspectral cam-
eras [26, 42], Near Infra-Red(NIR) [37, 39], thermal cameras [9, 10],
and RGB camera[17], in conjunction with other sensors, to collect
visual data from agricultural fields. These non-destructive and non-
invasive techniques offer a means to acquire data for studying and
monitoring produce quality [18, 42], detecting plant diseases[17],
monitoring stress levels [6], and soil nutrient and plant health [29].
Wireless technologies provide flexible and cost-effective solutions
for monitoring crops and agricultural areas. Sensors like wifi have

been utilized for spatial data collection, irrigation planning, appli-
cation of essential soil nutrients, pest control, influence livestock
behavior, and precision planting [2, 12, 20, 43].

7 DISCUSSION
Room for improvement:We demonstrate that by re-purposing
different off-the-shelf components, it is possible to build an in-
tegrated solution to perform produce quality estimation. While
we focus on re-purposing light sensors to identify the decompo-
sition state in fresh produce, other sensors could be selected and
re-purposed to achieve the same task. For instance, wireless sensing
can be used to characterize different fruits [24]. Ultrasound sen-
sors could also be used to identify continuous changes on surfaces
as it has been demonstrated that ultrasound signals characterize
different materials [1]. Besides this, we are also interested in in-
vestigating further how to assemble and coordinate swarms of
off-the-shelf nano-drones for massive monitoring of produce in
open fields. Moreover, further investigation into 3D printing could
provide valuable insights into mapping integrated off-the-shelf
components into a 3D printing encasing.
Autonomy: By using our framework, we demonstrate that it is
possible to combine different off-the-shelf technologies into a sin-
gle monitoring solution. This solution, however, is partially au-
tonomous and currently requires human-in-the-loop operators to
control the navigation of the nano-drone. We are interested on
investigating further how fully autonomous capabilities can be
granted to off-the-shelf solutions consisting of heterogeneous com-
ponents. Ultimately, fully autonomy may require a central master
component controlling and regulating all the augmented off-the-
shelf components, following a plug and play approach [45].
Surrounding proximal infrastructure:While in principle, it is
possible to execute heavy processing in our current prototype. It
is possible to improve the efficient operations of our prototype
if external services are available. For instance, object detection
services could be deployed and accessed on the edge to avoid the
battery drains of constrained devices. In this manner, the nano-
drone could preserve its energy and improve its navigation to target
behavior, which incidentally will improve the quality of estimation.
Recurring issues: The battery life of autonomous drones is a
critical issue for their effective operations. Nano-drones are not
exempt from it and present even more constraints for operational
usage. Nano-drones can operate for less than an hour. This is a
recurring issue that constrained technologies face. Advancements
in energy transferred using WiFi can be considered as part of the
deployments to make nano-drones even last longer.

8 SUMMARY AND CONCLUSIONS
In this paper, we presented a practical framework that re-purposes
off-the-shelf and low-cost components into integrated solutions
that can be easily scaled and subsequently deployed in the wild.
We demonstrate the potential of our framework by presenting a
monitoring solution that can be built for produce quality estimation
(with less than 50 EUR cost), fostering further the digital transfor-
mation of agricultural practices. Through rigorous experiments and
benchmarks that analyze the performance of the re-purposed tech-
nologies (three different light sensors and a nano-drone), our results
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indicate that off-the-shelf light sensors embedded in autonomous
(nano) drones can perform produce quality estimation with high
accuracy. Our work paves the way towards practical guidelines
that can be used to assemble complex off-the-shelf components in
a plug and play fashion.
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