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Abstract—Opportunistic networks provide the underlying
foundations to enable collaborative and distributed applications
close to users. These applications exploit the temporal and spatial
availability of proximal devices to share the execution of different
tasks ranging from sensing to networking. A key limitation of
these networks is its short life span and limited coverage. In
this paper, we present a research vision in which spatiotemporal
holes between opportunistic networks are filled through the
deployment of autonomous drones acting as intelligent proxies.
By doing this, it is then possible to augment the coverage of these
networks as well as to improve the availability of opportunities
to find collaborators. Through a rigorous analysis that consider
a dataset captured by a cellular operator, we demonstrate the
feasibility of the vision and highlight a road map of research
challenges that have to be fulfilled to achieve it. Our results
suggest that while several opportunistic networks emerge during
the day in different urban locations, these networks tend to be
of small size and isolated. However, by using autonomous drones
to interconnect these networks, it is possible to augment the
surrounding availability of proximal devices by almost 3x times.

Index Terms—Autonomous drones; Autonomous vehicles; IoT;
Smart city;
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I. INTRODUCTION

Opportunistic networks are formed by interconnecting de-
vices sharing the same spatial and temporal characteristics [1],
[2]. Proximal devices interconnect via short range communi-
cation networks, e.g., device-to-device (D2D); reducing the
need to rely on the Internet backbone. The most common
opportunistic networks exploit human mobility and personal
social devices from individuals to establish networks in which
devices can share distributed resources and collaborate with
the execution of tasks. Different tasks can be accomplished
between interconnected devices ranging from sampling data
using sensors to routing network packages [3]. While disaster
management and transient infrastructure are important use
cases supported by these networks, emerging paradigms, such
as edge intelligence [4], federated learning [5] and the Meta-
verse [6] can improve the performance of their applications

Fig. 1: Our vision of opportunistic multi-drone networks
- Isolated networks are interconnected through autonomous
drones acting as intelligent proxies.

through these networks. However, as these depend on human
mobility to emerge, a key limitation is that the connectivity is
intermittent and can terminate unexpectedly - even if delay-
tolerant mechanisms are adopted. As a result, solutions that
improve and foster larger coverage and higher availability of
opportunistic networks are required.

Existing solutions have investigated the formation of oppor-
tunistic networks to enable collaborations between distributed
computing, networking and sensing resources [2]. The static
deployment of IoT and smart devices has been envisioned
as a way to provide distributed infrastructure on the edge
of the network [1]. Similar to this, cloudlets, fog solutions
and frameworks to distribute tasks among multiple devices
has been explored extensively [7]. A key problem with these
solutions is that they require fixed deployments, which are
not dense enough in the wild. In addition, there is a lack
of trust towards these devices. As a result, social-aware,



multi-party and security mechanisms are required to be used
instead, which increases the complexity of usage. Likewise,
a combination of Cloud-Edge orchestration also has been
proposed to improve the continuous availability of resources.
This however reduces the performance benefits of distribution
and collaboration between devices. Since the uptake of au-
tonomous drones is increasing and those are blended within
urban areas, it is possible to envision them as a way to improve
higher availability and coverage of opportunistic networks.

This paper presents a research vision of opportunistic multi-
drone networks. As depicted in Figure 1, in this vision,
autonomous drones that operate within urban areas are pig-
gybacked or scheduled to act as intelligent gateways that in-
terconnect opportunistic networks. By doing this, autonomous
drones can then augment the scope of these networks and
increase the opportunities of finding collaborators. Through
a rigorous analysis that consider a dataset captured by a
cellular operator, first, we quantify the amount of opportunistic
networks that can be formed during different time intervals
during a day using smartphones. With this information, we
then characterize the amount of devices that can be harnessed
in 1) individual networks and 2) interconnected networks
through autonomous drones. In addition to this, we also
present multiple application use cases that can benefit from
this vision. We also reflect back on current state-of-the-art
solutions and discuss the implications and limitations of our
work.

II. EMERGING USE CASES AND APPLICATIONS

Opportunistic networks are key to build the underlying
infrastructure supporting collaborative and distributed appli-
cations. Below we briefly discuss representative examples of
applications that benefit from improving the availability of
finding collaborators in these networks.
Metaverse applications: AR/VR applications provide the
basis for a Metaverse [6]. These applications are resource
intensive and individual devices drain their batteries when
running them continuously, e.g., video rendering. Distributed
and collaborative processing can facilitate reducing the com-
plexity of executing these applications as well as minimizing
the need of relying on remote infrastructure. For instance,
image processing applications can speed up 2x and more when
using additional devices to execute them [2], [5]. By using
autonomous drones to reach other opportunistic networks,
there is a larger amount of opportunities to interconnect
devices in proximity, such that Metaverse applications can
sustain longer through low-latency infrastructure available in
their surroundings.
Vehicular services: Advancements in autonomous cars are
quickly hampered by the large amount of computation required
to analyze the data produced by the vehicles, e.g., autonomous
cars generate in average 5T of data per hour [8]. While
6G networks are envisioned to accelerate data transferred,
distributed computation in the surrounding of vehicles is also
required to reduce the computational latency of data process-
ing. Autonomous drones can exploit surrounding infrastructure
to pre-process large amounts of data asynchronously, such

that pre-computed functionality is available to vehicles. For
instance, pedestrian counting is necessary to regulate car speed
in a location and this can be fetched by surrounding vehicles
from autonomous drones.

Edge intelligence: Distributed AI services in proximity to
end devices require a robust low-latency network to ensure
continuous connectivity between devices deployed on the
edge [4]. Autonomous drones acting as gateways to intercon-
nect transient networks can improve the availability of devices.
Besides this, autonomous drones can facilitate the training
and execution of AI models by acting as coordinators. In
this manner, autonomous drones can help in acquiring data
contributions to train models by selecting the most suitable
devices.

III. CHALLENGES AND OPPORTUNITIES

Autonomous drones are rapidly automating several activities
performed by humans, e.g., grocery and delivery. As their
adoption increases, these autonomous devices are starting to
have their own mobility patterns and emerging routes, which
can be exploited for establishing and interconnecting oppor-
tunistic networks. This section starts by reflecting on current
state-of-the-art methods and solutions, and then presents the
challenges and opportunities to enable multi-drone support for
opportunistic networks.

Multi-drone capacity planning: Autonomous drones have
designated routes to move across different locations. These
routes can be exploited; such that autonomous drones can
become intelligent gateways to interconnect different oppor-
tunistic networks [1]. Indeed, even if autonomous drones
are in constant movement, their operations within specific
locations can be scheduled to move in and out based on their
available number, e.g., drone churn. A key challenge is to have
stable availability of autonomous drones to maintain contin-
uous and consistent communications between interconnected
opportunistic networks. The stable availability of autonomous
drones as gateways can aid in preserving network functions
active, such that it is easy to find collaborators for users.
To estimate optimally the amount of autonomous drones that
are required to interconnect different networks, it is necessary
to apply capacity planning techniques that consider different
factors [9], such as type of drone, operational time, surround-
ing infrastructure and expected workload to mention some.
While over-provisioning of autonomous drones in area can
also support continuous communication, the number of drones
allowed in an area is commonly restricted such that human-
perception of the surrounding is not perturbed. This is another
challenge surrounding the deployment of autonomous drones
in the wild.

Swarm and network intelligence: Besides having awareness
about their surroundings and contexts, autonomous drones
are also expected to work as a collective swarm that further
optimizes network service provisioning [10]. For instance,
when transferring low priority packages, to save energy, some
drones may prefer to offload data to proximal 5G stations
rather than rely on device-to-device communications. Another



example is to regulate the formation of opportunistic net-
works through autonomous drones. Here, autonomous drones
can coordinate the use of opportunistic networks for certain
tasks, e.g., distributed and collaborative computing for rend-
ing videos or processing large amounts of distributed data.
The use of advanced machine learning opens a plethora of
opportunities for swarm optimization. A key challenge is to
have representative and large enough data that can model
the coordination between autonomous drones. In addition to
this, autonomous drones are also expected to adopt resilient
typologies, in which multi-paths are always available even
in the present of drone failures. Multi-paths are especially
important for multiverse-like applications (AR/VR) [3].
Security and privacy-preserving mechanisms: Autonomous
drones can become a source for attacks and threats for
users transferring data [11]. This is specially problematic
for opportunistic networks harnessing computing power for
edge applications and intelligence [12]. Indeed, compromised
autonomous drones can be easily utilized to perform attacks
over model and data of applications, e.g., data poisoning and
model evasion. As a result, autonomous drones require to
be authenticated before forming part of the network. Thus,
a key challenge is to make autonomous drones trustworthy.
Notice that other infrastructure like cloudlets and edge servers
suffer the same problem. To overcome the issue, deployment
of these technologies is typically powered by well-known
providers, such that the trust of users in using them increases.
Naturally, attackers can also impersonate service providers
to steal personal information or digital entities. As a result,
privacy preserving methods need to ensure no sensitive data
is transmitted to this type of infrastructure.
Recurring issues: Battery life of autonomous drones is a
recurring problem that prevent long term usage of the tech-
nology. As autonomous drones acquire more sophisticated au-
tonomy, the demand for heavy processing increases, resulting
in short life span of batteries. Thus, a key challenge is energy
consumption and optimization of tasks of autonomous drones.
Anchor stations to re-charge autonomous drones periodically
have been proposed to overcome this problem. Other solu-
tions rely on the use of solar panels and harvesting energy
mechanisms [13], e.g., wind and tidal. Power-based wireless
solutions are becoming a reality and can be also envisioned to
aid in overcoming this issue. Charging times can potentially
be piggybacked to easily interconnect opportunistic networks.
Besides this, other recurring issues are the augmentation of
autonomous drones with plug and play components [9], and
the robust training of models to support different autonomous
functionalities, e.g., navigation. Another key issue to overcome
is related to the interoperability between autonomous drones
and other devices. This can be addressed by adopting well-
known standards to route information, e.g., forwarding proto-
cols; and state-of-the-art algorithms to disseminate data, e.g.,
epidemic protocols.

IV. THE EXPERIMENT

The potential of the proposed vision is demonstrated
through the rigorous analysis of a mobile operator dataset. We

rely on this dataset to quantify the amount of opportunistic net-
works that emerge during a day on an hourly basis. With this
information, we then analyze how autonomous drones acting
as intelligent gateways can fill the gaps between individual
opportunistic networks to interconnect them. Lastly, as users
look for collaborators, we quantify the augmented amount of
collaborators that is available through interconnected oppor-
tunistic networks. In the following, a detail description of the
experiment is provided.

Dataset and preparation: The dataset contains real-world
crowd-sensed measurements of app usage and mobility
patterns, depicting real world situations. The dataset is
anonymized and gathers data over the period (August 21,
2017) for 24 hrs from a cellular operator in Shanghai. The
dataset was released in Applens workshop in 2019. As our goal
is to identify crowded areas where opportunistic networks can
be established, the dataset captures suitable insights about hu-
man mobility and behavior. The dataset contains information
from users connecting to base stations as a consequence of
calls, messaging, and data transfer activities associated with
mobile application usage. Each sample contains the device
identifier, the start and end time of a session to the level of
seconds, the amount of data exchanged during the session
(in bytes), the identifier of the base station that handles the
connection, and the GPS coordinates of the base station. The
dataset comprises information from 998 unique devices and
7663 base stations. The IDs of devices are anonymised to
guarantee the privacy of users.

Pre-processing: Before our analysis, we validate the base
stations in our data using the Opencellid database1. The
Opencellid project is the largest collaborative open-data repos-
itory worldwide of GPS positions of cell towers. The project
aims to offer GSM localisation from data gathered from
various sources, including mobile apps and network providers.
Figure 2(a) shows the base stations (using blue dots) and
Opencellid database (using green dots). From Figure 2(a), it
can be clearly observed that not all base stations in the dataset
are overlaying geographically over the Opencellid dataset.
To make a proper matching between these two datasets, we
used radial distance to overlay the GPS coordinates of our
operator dataset. In particular, we used a maximum 500-meter
radial distance to verify and calibrate base station location.
The resulting dataset contains 8, 248, 775 samples from 826
devices and 4011 base stations.

Region of Interest: Our analysis focuses on the most dense
area in the dataset as it captures better human mobility in
different urban scenarios. We focus our analysis on the 20
km2 area (Region Of Interest - ROI) with the highest density
of base stations located in the northeast part of the city
(see Figure 2(b)), which allow us to evaluate data gathering
over various spatiotemporal levels. The selected area contains
3, 425, 014 samples from 548 devices and 1198 base stations.

Methodology: Before quantifying opportunistic networks, we
first model the mobility of individuals users. We rely on grid-

1https://opencellid.org/



(a) Base station and Open cell id. (b) Region of Interest (ROI). (c) Land use in the ROI. (d) All users

Fig. 2: Dataset pre-processing and preparation; a) Dataset validation with urban locations; b) Region of interest (ROI) selected
for the analysis; c) Types of locations in the ROI and d) Mobility of users obtained from the dataset.

like structure that overlaps the ROI to analyze the mobility
of all the users available in that location. Figure 2(c) clearly
illustrates the grid overlapping the ROI. Our grid structure
consists of 100 cells and each cell represents a region con-
taining a set of base stations in which devices connect to.
By looking at devices connecting to the same base station
during a specific interval of time, it is possible to identify
devices that are at one-hop distance between each other.
This is important to quantify the amount of devices that can
interconnect together in an opportunistic network. In addition
to this, we also built the trajectories of individual users.
These trajectories depict user mobility as transitions between
cells. With this information, it is then possible to analyze the
multiple opportunistic networks that are formed by different
combination of users as they encountered each other.

Our grid-like structure uses 100 cells for the grid as it
provides an optimal cell area to merge base stations while
retaining enough descriptive information to differentiate mul-
tiple regions. Each cell depicts an area of 2 km2. Our grid is
placed on the ROI as it represents the busiest part of the city,
hence more descriptive patterns that capture human mobility
can be discovered. To avoid abnormal trajectories that depict
very short or long mobility patterns, the dataset is pruned
down further. The pruning is done by removing all connectivity
sessions below the 10th percentile or above the 90th percentile.
To estimate sessions of users, we model sessions on hourly
basis intervals. An example to illustrate this, it’s a session of
a device connecting to the base station B1. Assuming that
the device starts its session at 09:20 AM and ends at 10:10
AM, this leads to two sessions in our analysis, one at 9:00
AM and another at 10:00 AM. Moreover, multiple sessions
that are identified during the same hour are combined. For
instance, a device connecting to base station B2 with a starting
session at 09:30 AM and ending at 09:40 AM; and then a
subsequent session of the same device starting at 09:45 AM
and ending at 09:55 AM, leads to one session at 9:00 AM.
After applying this final data pruning and refining, our dataset
contains 1, 655, 271 samples for 512 devices with 1, 171 base
stations.

Land usage mapping: Lastly, to have an intuitive view of
human behavior and patterns in the city, we also identify
land uses and locations in the ROI. We rely on general areas
(Residential, Commercial, Green land, Industrial, Transport

and Others) that are inherent in any urban structural planning
of a city. The land use is extracted using OpenStreetMap.
The selected areas, include: commercial areas representing
all the offices, shopping centres, warehouses, or retail stores;
the residential areas depicting all the residential sites like
buildings, and private houses; the green land depicting all
the available forests, nature reserves and public parks; the
industrial areas representing all the sites that are used for
industrial development and the transport area representing the
sites that users use to commute using bus or train. Another
reason to choose these areas is that they are representative
examples of locations that people encounter as part of every-
day routines on a daily basis. For example, commercial and
industrial areas expose working hours’ patterns, a train and bus
stations describe users’ transportation mobility, and residential
areas describes habitual housing patterns. Figure 2(d) shows
the trajectories that can be calculated from all the 512 users
in our dataset and consider the mobility of users for the whole
day. The intensity of the cell color quantifies the amount of
users available in that cell, where white color is the lowest
and darker (green) color the highest.

V. EVALUATION AND RESULTS

A. Quantifying opportunistic networks

Analysis: Our goal is to identify the amount of opportunistic
networks that emerge at different times during the day in
different (cell) locations in our ROI. After that, autonomous
drones are deployed in locations to interconnect isolated
opportunistic networks to augment their coverage. To perform
this, it is first necessary to define a human daily routine.
This is important to identify opportunistic devices that can
be harnessed together. As a result, we selected a human
routine that divides the day into 8 intervals. This routine is
selected from [2] and depicts a fine-grained level of human
activities that can be realistically performed during the day by
individuals. Routines with low amount of time intervals are
not selected as it is difficult to observe clear mobility patterns
between time periods. Likewise, routines with higher amount
of intervals do not depict an average human routine. Our
selected routine divides the day into fairly intuitive intervals,
including, Rest (early morning) 1:00 a.m. to 5:59 a.m.; Rush
hours (morning) 6:00 a.m. to 7:59 a.m.; Work (morning) 8:00



(a) Rush hours (morning) 6:00-7:00 a.m. (b) Work (morning) 8:00-11:59 a.m (c) Lunch break 12:00 a.m.-2:59 p.m.

(d) Work (afternoon) 3:00-5:59 p.m. (e) Rush hours (evening) 6:00-8:59 p.m. (f) Leisure (evening) 9:00 p.m.-12:59 a.m.

Fig. 3: Opportunistic networks that emerge at different locations during different times of the day; and tentative deployments
of autonomous drones that can be used to interconnect opportunistic networks.

a.m. to 11:59 a.m.; Lunch break 12:00 p.m. to 2:59 p.m.; Work
(afternoon) 3:00 p.m. to 5:59 p.m.; Rush hours (evening) 6:00
p.m. to 8:59 p.m.; and Leisure (evening) 9:00 p.m. to 12:59
a.m.

Results: Figure 3 shows the results. The interval Rest (early
morning) is not presented as the amount of possible oppor-
tunistic networks to be formed is low. This is reasonable as
this time depicts sleeping patterns of users, providing low
opportunities for the execution of collaborative and distributed
tasks. Previous research has also reported low human mobility
within this time intervals [14]. To identify the opportunistic
networks, we quantify the amount of users connecting to base
stations within a cell. Devices in the same cell can form
opportunistic networks easily by interconnecting to each other
using short range communications or by connecting to the
same base station [2]. Here, cells with darker (green) colors
depict higher concentration of users while lighter (green)
tonalities depict a few or none users (white). In addition, we
also construct trajectories from individual mobility traces for
each user (blue lines). The key insight of these trajectories is
to show that even though there are moving users through cells,
there is not enough time for devices to collaborate [2]. Overall,
from Figure 3, it is possible to observe a different number

of networks during different time intervals. It is possible to
observe higher number of networks emerging during Work
and Lunch hours (Figure 3(b), (c) and (d)). Moreover, despite
users moving between cells, we can also observe time intervals
of activities where a low amount of networks can be formed
(Figure 3(a) and (f)). This indicates that devices are moving
around, but there is not enough time to establish meaningful
collaborations between them as connectivity is intermittent
and encounter between devices spontaneous. All in all, while
our results suggest that several opportunistic networks can be
discovered, these networks are isolated from other networks.
Interconnecting these networks can potentially improve the
availability of distributed resources, and enable a large variety
of collaborative applications [5], reducing the need to rely
on the main Internet backbone infrastructure to access the
resources.

B. Filling the holes

Opportunities to users: Besides Figure 3 showing the results
of quantified opportunistic networks, we also include in the
figure how these networks can be interconnected and what
are the benefits of doing this. Thus, we next show how the
interconnecting of opportunistic networks can improve the



Routine (activities) User A User B Path (A-B)
Work (morning) 130 118 369
Lunch break 100 95 352
Work (afternoon) 116 78 366
Rush hours (evening) 93 80 240
Leisure (evening) 151 136 252
Total 118 101.4 315.8

TABLE I: Number of distributed devices that are available in
individual and interconnected networks.

opportunities to establish collaborations between users. We
ranked all the cells in our ROI based on two factors, 1) total
amount of users in that cell, and 2) adjacent number of users in
neighbor cells. From this list of candidate networks, two users
(user A and user B) are selected and evaluated in different
situations. The selection criteria is that a user should belong
to an opportunistic network ranked in the 50th percentile; each
user is chosen randomly from the list of candidate networks,
and the two users cannot belong to the same network. This
ensures that users can be conceptually treated as workers [15],
such that workers are required to establish collaborators to
perform a task and do not engage into collaborators from
networks that are very sparse and highly volatile, e.g., very os-
cillating churn rate. Notice that other situations for augmenting
opportunistic networks could be adopted, however, we focus
on situations that make it feasible and reasonable to establish
collaboration between devices. Indeed, in these situations, the
churn of devices is stable enough to guarantee that users will
benefit from collaborating rather than deplete their resources
from non-beneficial collaborations [2].

Network model and assumptions: After selecting the users in
the opportunistic networks, we next illustrate how the amount
of collaboration opportunities can be augmented by using
autonomous drones as proxy to interconnect isolated networks.
To make our results intuitive to understand, we proceed
to interconnect the previous selected users A and B. We
assume that networks with large concentrations of devices in
adjacent cells can interconnect automatically, while cells with
fewer or none (white and lighter-green backgrounds) require
the deployment of autonomous drones. In addition, we also
highlight stable paths that are created by exploiting cells with
denser (darker-green) amount of devices to intercommunicate
users A and B. Notice that other paths and networks can
be considered, however, other paths may be less stable or
require more jumps to establish intercommunication, making
the network paths more difficult to follow.

Results: Figure 3 overlaps the deployment of autonomous
drones required to interconnect users A and B in different net-
works as well as highlights the communication path between
them. From the figure, we can observe that the deployment of
autonomous drones can augment the amount of opportunities
to find collaborators for individual users. Table I quantifies
the number of devices that are accessible for each user A
and B in their respective surrounding area (within the same
cell), and adjacent cells as these devices can be accessed by
any device in the opportunistic network. In parallel to this,
by using autonomous drones as intelligent gateways, it is also

possible to observe the amount of devices that are in reach
when interconnecting different networks (Path A-B). Here,
we can observe that the deployment of an autonomous drone
facilitates the access to other devices in more distant cells. Our
results suggest that the amount of devices in average increases
3x times when interconnecting networks using autonomous
drones. For instance, during Lunch break for User A and B,
the number of devices in average increases from 97 to 352,
suggesting that a higher amount of devices can be considered
as underlying infrastructure of collaborative and distributed
applications. Despite this, Figure 3 also shows that there are
several locations (cells) with fewer number of devices. For
instance, Figure 3(a) and (f) shows the locations with the
less concentration of devices. In this case, the deployment of
autonomous drones can be used instead for caching content
and assignation of training tasks that are asynchronously
delivered to users rather than enabling synchronous execution
of distributed and collaborative applications [5].

VI. DISCUSSION

Multi-drone deployment size: In our analysis, the area of
each cell in reality depicts a 2 km squared area in the ROI.
A deployment of autonomous drones is required in each cell
to enable gateway connectivity services that interconnect the
opportunistic networks. The amount of autonomous drones
required in each cell can be selected based on a large spectrum
of aspects, such as drone modality (aerial, aquatic, land),
drone capacity (resource payload), connectivity range, drone
stationary time, battery life, and amount of users in the location
to mention some. While our results demonstrate the potential
of using autonomous drones for interconnecting networks,
further modelling and analysis of the problem using multiple
parameters is required to select the optimal deployment of
autonomous drones in complex urban contexts. Our previous
work [9] explores this selection simply by using the amount
of users available in a location as a single parameter.
Re-designing urban areas: Currently, urban areas are not
designed for the easy integration of autonomous drones. Ex-
isting solutions operate in sidewalks or within specific loca-
tions, e.g., University campus. Moreover, certain modalities
of autonomous drones are also preferable for operating in
specific areas. For instance, autonomous ground drones are
preferable for operating in urban areas when compared with
aerial drones as ground drones produce less noise. As the
deployment of drone technology increases, it is possible that
cities may re-design urban spaces to blend their deployments
more transparently. This implies that in future city designs,
it is easy to exploit autonomous drones in our surroundings,
e.g., in a bus stop and metro.
Stakeholders: Service and content providers would be the
main stakeholders of our solution. Similarly, vendor of apps
can lease autonomous drones to support the performance of
their applications. For instance, Pokemon Go and Metaverse
apps. Governmental institutions and municipalities would also
be interested in maintaining ready-to-use communication in-
frastructure for disaster management powered by autonomous
drones.



Room for improvement: While our work uses a grid-like
method with cells of fixed dimensions for mobility analysis
between areas, we are interested in exploring whether optimal
selection of autonomous drones is possible when considering
different area sizes (smaller cells). Besides this, we are also
interested in mapping better the land usage of a city to a
specific modality of autonomous drone. For instance, in a park
area with a lake, underwater drones could be a more energy-
efficient option to interconnect networks as the underwater
drone can float on the surface. In parallel to this, we are
also interested in verifying our results further with datasets
from other cities. It is possible that different cities have
slightly different urban structure characteristics, suggesting
that the use of autonomous drones may not be possible to
be piggybacked transparently in some cases, requiring instead,
dedicated autonomous drones for performing network routing
and forwarding tasks in a specific location.
Data collection at scale: Our work demonstrates that a
deployment of multiple autonomous drones can be exploited to
fill the gaps between networks, supporting better collaborative
and distributed applications. While autonomous drones to
deliver services on the edge have been envisioned in the art [9],
autonomous drones can also be utilized to support a variety
of data collection applications. For instance, crowdsensing and
crowdsourcing methods could be initiated by an autonomous
drone instead of a central server. The collected data can then be
transmitted asynchronously between autonomous drones until
reaching its destination. At the same time, autonomous drones
can be used to cache data. This cached data can be delivered
in other locations to bootstrap the performance of smartphone
and wearable applications.
Micro-mobility infrastructure: Another type of smart in-
frastructure that can be exploited to interconnect opportunis-
tic networks is micro-mobility one. Micro-mobility vehicles,
e.g., scooters and bicycles; can integrate packet forwarding
interfaces to disseminate network data. Moreover, micro-
mobility infrastructure inherently follows human mobility pat-
terns, making it more suitable to interconnect opportunistic
networks. Micro-mobility may provide better area coverage
and more adaptability and flexibility to different cities with dif-
ferent urban structure characteristics. Naturally, a combination
of multiple solutions (micro-mobility vehicles and autonomous
drones) can provide more robust performance of the gateways
and better coverage at city-scale.

VII. SUMMARY AND CONCLUSIONS

In this paper, a research vision of opportunistic multi-drone
networks is presented. This vision builds on the idea of using
autonomous drones to improve the coverage and the process
of finding collaborators in opportunistic networks. Through a
rigorous analysis that consider a dataset captured by a cellular
operator, the feasibility of the vision is demonstrated. Our re-
sults suggest that autonomous drones can fill the holes between
individual networks to overcome their limited coverage and
short life span. By doing so, our findings also indicate that it
is possible to augment the surrounding availability of proximal
devices up to 3x times. Our work paves the way towards new

solutions that can advance further the usage of opportunistic
networks to support emerging application domains, such as
the Metaverse and edge intelligence.
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