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Abstract—Micro-mobility vehicles are not just friendly trans-
portation options for the environment but also can aid in
protecting it. Currently, obtaining environmental indicators at
a city-scale is challenging due to limited spatial and temporal
coverage in existing solutions. This paper contributes a sensor-
based micro-mobility framework for equipping micro-mobility
vehicles with sensors for environmental monitoring. To build
this framework, we conduct a literature review on sensor re-
purposing for environmental monitoring. With this information,
we then describe how our framework can facilitate the analysis
of sensors embedded in micro-mobility vehicles. Our framework
organizes research challenges based on the range level of the
sensors to collect data samples to characterize the surrounding
environment, with each level combining multiple modalities, or
introducing participatory sensing to improve veracity of the
measurements. We then discuss the fundamental issues in data
collection that arise at each level and highlight the most feasible
applications for environmental monitoring that can be supported
by micro-mobility. We conclude with a summary of core research
challenges, opportunities, and a discussion on the implications of
using these vehicles.
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I. INTRODUCTION

Micro-mobility vehicles are emerging as an innovative
transportation mode, offering convenient and environmentally
friendly options for short-distance travel in urban areas. Apart
from aiding users in their movement, micro-mobility vehicles
also capture fundamental human mobility patterns and activi-
ties within city areas of interest [1]. These inherent character-
istics make these vehicles powerful tools for characterizing
and monitoring the health of human habitats. As a result,
micro-mobility vehicles are not just friendly transportation
options for the environment but also can aid in protecting it.
Environmental sustainability refers to the practice of protecting
natural resources and ecosystems, conserving them for the
well-being of current and future inhabitants [2]. Thanks to
the emergence of pervasive sensing, monitoring solutions to
obtain environmental indicators can be easily designed and

developed using low-cost technologies. Environmental indi-
cators are measures that represent what is happening in the
environment. Pervasive sensing relies on the use of off-the-
shelf and rapid prototyping sensors, and the re-purposing of
collected data to derive indicators from a range of specialized
applications. For instance, a rapid prototyping spectrometer
can analyze different characteristics of water quality to deter-
mine whether it is polluted [3], and cameras can characterize
different waste in urban areas [4]. A key limitation of these
solutions is directly linked to the deployment of the sensor,
which provides very sparse spatial and temporal coverage
of an area. Equipping micro-mobility vehicles with sensors
for environmental monitoring poses a great opportunity to
improve the monitoring density of natural ecosystems.

Existing solutions for environmental monitoring rely mostly
on specialized, costly and bulky equipment. For instance,
massive air quality towers and water stations [5]. Besides
requiring fixed deployment and experts to operate them, a
key problem with these solutions is its limited coverage [6],
making them unsuitable to obtain environmental indicators at
city-scale. Other solutions for environmental monitoring rely
on the static deployment of IoT devices (blended within 3D
printing designs [7]). For instance, weather stations can be
easily fabricated and deployed with rapid prototyping IoT
devices. The main problem with these solutions is that their
sensor estimations are highly inaccurate, requiring frequent re-
calibration with reference equipment [8], e.g. nearby towers or
retrieval of online information. Another solution is the use of
personal and wearable devices. Indeed, sensors in smartphones
and wearables are piggybacked from app usage sessions, such
that data from the individual’s surrounding is collected and
environmental indicators can be derived [9]–[11]. New sensors
have also been designed, such that those can be easily embed-
ded within user’s personal items, e.g., backpack or handbag.
Sensor inaccuracies from these solutions are mainly over-
come using crowdsensing and crowdsourcing methods [12]–
[14]. A key problem with these solutions however is the
incentive of individuals for performing such data collection
tasks, making the system unsustainable in the long term [15].
At the same time, more advanced and autonomous solutions
have proposed the use of autonomous vehicles (UAVs, AUVs,
and AGVs) embedded with sensors to monitor environmental
ecosystems [16]. Unfortunately, autonomous vehicles have not
reached a full autonomy level to perform these tasks yet. While



several solutions are available for environmental monitoring,
those are not enough by themselves to obtain dense indicators
at city-scale, requiring to explore new solutions to augment
and complement existing deployments.

In this paper, we describe a research vision in which micro-
mobility infrastructure deployed in urban areas is exploited for
environmental monitoring (as shown in Figure 1). To achieve
our vision, we present a framework that aids in equipping and
re-purposing sensors in micro-mobility vehicles to perform
different types of environmental monitoring. To analyze this,
first, we review the type of applications for environmental
monitoring that have been developed by re-purposing different
sensing technologies. After that, we reflect on how sensors
can be embedded in micro-mobility vehicles and the level
of coverage that sensors can provide. As single individuals
(driver) are operating the vehicles, by using the Edward Hall’s
proxemics theory [17], we also analyze the level of oppor-
tunistic participation (or human-assistance) that individuals
can provide to overcome the limitations of sensors, e.g., using
experience sampling method [18]. In the light of our analysis,
we then provide a detailed discussion about core challenges
and opportunities that can be exploited by augmenting micro-
mobility vehicles for environmental monitoring.

II. REVIEW ON SENSOR RE-PURPOSING FOR
ENVIRONMENTAL MONITORING

We begin by reviewing current on-going efforts on sensor
re-purposing for environmental monitoring. Thus, we describe
our literature review process and its output, followed by
highlighting how these solutions can benefit from assistance
of users.

Environmental indicators: UNECE (United Nations Eco-
nomic Commission for Europe) has categorized environmental
sustainability into four (4) different types of areas, including,
air quality, water quality, noise quality and biodiversity. Air
quality indicators quantify the amount of pollutants present
in the air [19]. Likewise, water quality indicators measure
level and concentration of contaminants mixed with water,
e.g., chemical and plastic particles [20]. Similarly, indicators
of biodiversity changes include the decline or disappearance of
animal species and its re-location; or the pollution of soil [21].
Lastly, noise indicators measure not just the presence of noise
but also its duration as it can impair our cognitive abilities [22].

Inclusion criteria and scope: The literature review considers
work from 2011 to 2021, e.g., (ten-years) and is conducted
during 2023. One year gap was kept in between to consider
work that has gathered attention and interest from the com-
munity. Two primary computer science databases are used, the
ACM library and IEEE Xplore. These databases are queried
based on a defined constructed criteria consisting in a set of
keywords. Environmental sustainability keywords are defined
first following standard and common terminology. Thus, first,
four categorical keywords are considered, “air”, “water”,
“biodiversity” and “noise”. These keywords are searched in
the title. After this, domain-specific keywords are selected to

search for work that relies on sensors and human involve-
ment to perform environmental monitoring. Thus, keywords,
“monitoring”, “outdoor”, “participatory”, and “sensing” are
considered. The monitoring keyword is selected to depict sen-
sor sampling continuously (title search). The outdoor keyword
is selected to consider outdoor environments (full text and
meta-data search), and the sensing keyword aims to capture
analytic methods (pipelines) that re-purpose sensor data to
enable environmental applications (full text and meta-data
search). The use of the participatory keyword is of particular
importance as it depicts human involvement, which makes it
feasible for an environmental solution to be mapped to micro-
mobility drivers (full text and meta-data search). Moreover,
this also allows us to set apart and filter work that just focuses
on engineering and technical developments, e.g., improved
signal processing or alternative algorithmic design or new
sensors. Other keywords such as “pervasive” and “micro
mobility” are not considered as these provide a few or none
results. A query then is formed by combining all domain-
specific keywords and one categorical keyword at the time.
To make our review concise, filters to each query are also
applied and these included selecting only full (mature) articles
written in English, and excluded demonstration, book chapters,
short papers, posters, workshop papers, lectures, keynotes,
interviews, opinions, columns and invited papers.

Output: Queries to the ACM library retrieved, 17 papers
(Noise), 7 papers (Biodiversity), 2 papers (Water) and 20
papers (Air). Likewise, Queries to IEEE Xplore retrieved, 8
papers (noise), None papers (Biodiversity), 2 papers (Water)
and 21 papers (Air). Queries were performed several times
to ensure their replication in the defined period. This set of
papers was read further to prone down the amount of papers
to 30. Our review focuses on off-the-shelf sensors found in
smartphones and wearable devices; and rapid IoT prototyping.
A key reason is that these sensors can be embedded into the
micro-mobility vehicles with ease. Methods that require large
deployment of sensors but fall into our criteria are excluded
as it is unfeasible to integrate them into a single micro-
mobility vehicle, e.g., embedding GPS into litter to track it.
When differences between contributions were found to be
incremental, year was chosen as an exclusion factor, selecting
the most recent year in the review period. When exclusion by
year was not possible, citation count was used instead. Our
literature review is thus built based on 30 papers.

Environmental monitoring sensors: Our results from the
queries indicate that environmental monitoring applications
supported by sensors are mostly investigated for air quality
monitoring [5], [8], [16], [23]–[29]. Likewise, noise mon-
itoring has been investigated by relying on micro-phones
embedded in personal devices [10], [11], [13], [22], [30]–
[33]. While we found relevant work in water and biodiversity
monitoring, the amount of work is reduced when compared
with air and noise. Biodiversity monitoring is performed
through micro-phone and camera measurements [13], [21],
[34]. To verify that no other synonyms were used instead, we
evaluated changing the biodiversity keyword by species and
fauna, this however did not list more entries nor additional



Fig. 1: Environmental monitoring applications supported by micro-mobility.

papers. Water monitoring is also conducted through camera
measurements and visual inspection from users [4], [20],
[35], [36]. From the reviewed work, it is possible to observe
that while human assistance is used to support environmental
measurements, the assistance of humans is performed over
two general types of sensors. Thus, we characterized these
sensors as 1) Non-contact and 2) Contact based sensors. This
is important as this also depicts the way in integration of a
sensor in the micro-mobility vehicle. Non-contact sensors can
obtain measurements from a distance relative to the vehicle,
e.g., cameras; whereas contact sensors collect measurements
in close proximity and within the vehicle, e.g., motion sensors.

Figure 2 shows the two categories of sensors that can be
used for environmental monitoring, accompanied by examples.
Two critical issues are observed to be recurring problems for
all environmental monitoring solutions, energy consumption
and sensor coverage. Energy footprint is key for collecting
samples continuously, whereas sensor coverage defines the
surrounding area that can be characterized by the sensor.
The figure also illustrates four quadrants representing trade-
offs between energy and sensor coverage. The first quadrant
(I) comprises sensors that have high energy footprint while
enabling high coverage from a distance, e.g., cameras, thermal
cameras and microphones. The second quadrant (II) consists of
sensors that also provide significant coverage from a distance,

but their energy footprint is lower, e.g., Bluetooth and WiFi.
Likewise, the third quadrant (III) depicts sensors that have low
energy footprint, but their coverage is linked to the object in
which they are embedded. Similarly, the fourth (IV) quadrant
consists of sensors that have a high energy footprint and their
coverage from a distance is tied to the surrounding (meters or
centimeters) of the object in which they are embedded.

III. MICRO-MOBILITY FOR ENVIRONMENTAL MONITORING

We next analyze how existing sensing solutions can be
integrated into micro-mobility vehicles. As human assistance
from drivers may be required when collecting data, we then
apply the Edward Hall’s discrete proxemic zone theory on the
drivers. With this information, we present a micro-mobility
framework that highlights possible applications that can be
supported when equipping micro-mobility vehicles with sen-
sors for environmental monitoring.

A. In-built sensors in micro-mobility vehicles

As shown in Figure 2, several sensors are available for en-
vironmental monitoring and these can be embedded in micro-
mobility vehicles. Micro-mobility refers to a diversity of small,
lightweight, and powered/non-powered vehicles that operate



Fig. 2: Sensor classification depicting the trade-off between
coverage and energy footprint.

in a moderate speed (below 25 km/h) and are commonly
driven by a single user at the time. Micro-mobility vehicles
may include, bicycles, e-bikes, e-scooters, e-skateboards, and
pedelecs (pedal assisted bicycles) among the most commons.
Micro-mobility vehicles are typically embedded with common
(motion) sensors to detect navigation and prevent unexpected
user’s movements that can lead to accidents [1]. Other sensors
embedded in micro-mobility vehicles also include GPS for
route planning and localization; and integrated cameras that
allow remote operators to get a glimpse of the surrounding
of the vehicle. Several in-built sensors can be re-purposed,
whereas others can be easily embedded, but this requires to
consider several critical aspects affecting the performance of
vehicles.

B. Sensor-based micro-mobility framework and proxemic
analysis

Integrating sensors for environmental monitoring in micro-
mobility vehicles requires to assess the level of data quality
from the samples that are obtained from the vehicle while
operating. By default, data measurements collected from these
low-cost sensors are prone to inaccuracies and high variance.
Thus, improving the veracity of the data is the first step to
adopt a sensor. A plausible solution is to send the collected
data from the vehicles to remote or edge servers, which can
contain data aggregation, fusion and processing pipelines to
extract the environmental indicators - or even to build machine
learning models from the data [37]. However, this solution
imposes heavy load in the underlying backbone infrastructure
(network and servers), increasing the carbon emission problem
of data centres. Thus, more sustainable methods for the
environment have to be explored and adopted.

As shown in Figure 3, micro-mobility vehicles are oper-
ated by individuals. Thus, it is possible to opportunistically
exploit human-assistance to improve further the collected
data before processing it. Collected measurements can then

be corrected and further validated through human support,
requiring less manipulation to extract indicators. An example
of this method is the use of human-assisted labelling for im-
ages, ESM (Experience-Sampling-Method) and participatory
sensing methods [18]. Introducing human-assistance for sensor
data collection on micro-mobility vehicles requires analyzing
the perception of individuals (drivers) towards the embedded
sensors. To enable human-assistance, sensors on the vehicles
need connectivity to personal devices of individuals, augment-
ing their overall range with multi-device sensing capabilities.

To analyze the potential of human assistance (drivers), we
apply the Edward Hall’s discrete proxemic theory [17] on
individuals operating micro-mobility vehicles. These proxemic
zones refer to the personal space individuals maintain around
themselves in social interactions. Marquardt builds on this
idea in [17], proposing proxemic interaction zones that devices
can exploit to obtain nearby knowledge of people and other
devices. Proxemic zones characterize the interpersonal relation
that devices can have to individuals as follows: Zone 1
(intimate) considers 0 − 0.5 m, Zone 2 (personal) considers
0.5 − 1 m, Zone 3 (Social) considers 1 − 4 m, and Zone
4 (public) considers 4 m and beyond. Since micro-mobility
vehicles become another device tool for users, which is also
in motion traversing different social spaces, we build on these
proxemic zones to analyze the perception of users towards
contributing with the collection of environmental data from
the vehicles. Figure 3 shows the augmented framework, which
includes further sensor classification quadrants to depict the
relative coverage of a sensor once embedded in the vehicle.
We proceed to analyze each Zone of the framework in detail.

Zone 1: Sensors collecting environmental measurements bene-
fit the most from human-assistance in this area. Human senses,
such as sight, sound, and smell, can provide valuable vali-
dation for sensor measurements. For instance, micro-vehicles
experiencing high levels of light and noise can request further
details about the possible causes, e.g., traffic jam or accidents.
Labelling of sensor measurements is also simpler in this area
as user contributions are just linked to personal data pri-
vacy considerations, requiring proper persuasive and incentive
mechanisms to engage the users. This area is exploited the
most when the micro-vehicle is in parking position.

Zone 2: The area coverage of sensors for environmental
monitoring is constrained in this area range. Environmental
measurements can change drastically between a few meter
distances. For instance, air quality measurements can be
completely different after one meter [5], [8]. Similarly, light
pollution measurements can change spontaneously as light
gets obstructed by urban infrastructure. This area also depicts
the upper bound limit for individuals to label environmental
monitoring measurements with high confidence. After this,
opportunistic human participation requires extra validation of
multiple individuals, e.g., using crowdsensing; or from other
IoT devices located in range of the vehicles. User participation
remains simpler in this area. This area is also exploited the
most when the micro-vehicle is in parking position.

Zone 3 - 4: Collecting data for environmental monitoring
becomes challenging in this area. The effectiveness of human-



Fig. 3: Environmental monitoring applications supported by
micro-mobility vehicles and pervasive sensing.

assistance starts decreasing rapidly as personal concerns for
data collection change from an individual to a collective one.
Privacy implications are more sensitive here as surrounding
individuals may create conflicts or raise concerns to the micro-
vehicle drivers. This suggests that drivers may be less willing
to aid any sensing modality. This area could potentially exploit
human memory of individuals to label environmental events in
segments within locations, e.g., biodiversity monitoring. This
suggest that this area can be exploited when the micro-mobility
vehicle is in motion from point A (source) to point B (desti-
nation). This however requires to analyze the performance of
human memory to retain events over a distance at different
speeds. Typically, human (short) memory is constrained to
retain up to 7 items at the time [38].

IV. CORE CHALLENGES AND OPPORTUNITIES

In the light of our analysis, we next describe key chal-
lenges and opportunities to perform environmental monitoring
with micro-mobility vehicles using sensors. Notice that some
challenges are recurring even between different state-of-the-
art solutions, supporting further that multiple complementary
solutions should be adopted.

Probing times and incentives: Parking times are the most
likely to be exploited for requesting human-assistance. Indeed,
human-assistance is not to be triggered when the vehicle is
operating as it can cause distraction to the drivers, which can
lead to unexpected crashes and accidents with surrounding
urban infrastructure. Thus, a key challenge is to determine

when to request human-assistance. Since micro-mobility vehi-
cles are used by individuals to move between shorter distances,
a way to overcome this is to rely on human memory [38].
It is also possible for the vehicle to create a tentative list
of sensed events observed while traversing a distance. This
list can then be verified by the individuals once the ride is
terminated. Alternatively, micro-mobility vehicles could also
request to be left in specific locations, such that environmental
data is collected before the next passenger uses the vehicle.
Incentives to persuade the users on performing these actions
are key to make the solution sustainable.

Re-designing of urban spaces: While some micro-mobility
vehicles have been introduced considering the urban design of
cities [1], other vehicles have been introduced without proper
planning nor fixed support infrastructure. Fixed parking, e.g.,
bicycle racks, foster less dense coverage when compared with
random parking. However, the latter is more invasive in urban
areas, causing discomfort to individuals. Random parking is
preferable for environmental monitoring, but it requires to deal
with a key challenge related to develop solutions that can ex-
ploit urban spaces without disrupting perception of individuals,
or causing obstruction to other urban infrastructure.

Energy consumption: There is large variety of powered and
non-powered micro-mobility vehicles. Non-powered micro-
mobility vehicles are preferable for environmental monitoring
as the energy to power the sensors could be piggybacked
directly from the vehicle itself as the user drives it, e.g., using a
bike energy-generator. In parallel to this, batteries of powered
vehicles can easily support additional sensors in these vehicles,
however, this may be counterproductive for their user experi-
ence as vehicles are required to be charged more frequently.
In addition, extra overhead in energy may require to deploy
more charging stations. Overcoming the overhead introduced
by sensors requires to rely on additional energy sources -
sustainable ones [39]. For instance, solar panels embedded in
the vehicle or wireless changing alternatives. A key challenge
is to deploy a robust energy support infrastructure that can
support the micro-mobility vehicles at city-scale.

Adaptive sampling: Data quality is a recurring key challenge
for off-the-shelf sensors and rapid prototyping devices [37].
Micro-mobility vehicles are expected to collect samples during
parking times but also during times traversing a distance. To
improve spatial and temporal coverage of the collected data,
this requires vehicles to adjust their sampling frequency based
on their detected state (parked or moving). Duty cycling meth-
ods can be applied to overcome this problem. However, since
vehicles can move at different speeds (regulated by the user),
it is also necessary to take into consideration the speed of the
vehicle to calibrate the sampling rate. Moreover, as different
sensors are collecting data, sensor data fusion methods are
required to obtain descriptive information that can be used to
model robustly environmental monitoring events. A way to
achieve this is to mimic the current multi-sensor approaches
used in self-driving cars, but optimizing data collection, such
that it is possible to reduce the collecting and processing cost
of data, otherwise, analysis over the data becomes a bottleneck
for the constrained micro-mobility vehicle.



Data privacy and security: Human-assistance can become a
security breach for personal devices of individuals. As users
connect their devices with micro-mobility vehicles, e.g., using
QR code, these codes can easily be hampered by attackers
to take control on the personal devices of individuals. A
key challenge to overcome is to re-enforce security through
new authentication methods and make micro-mobility vehicles
trustworthy [38]. This can also be overcome by introduc-
ing new interfaces in the micro-mobility vehicles, such that
personal devices are not required to be connected with the
vehicle. At the same time, micro-mobility vehicles are required
to implement anonymization and obfuscation methods when
collecting data from their surroundings, such that sensitive data
from individuals is not collected by third parties, e.g., facial
patterns, car plates and other bio-metrical body signatures.

V. DISCUSSION

Micro-mobility has been proposed as a means to support
environmental sustainability, with the potential for embedding
sensors in vehicles for environmental monitoring. In this con-
text, we conducted a literature review on sensor re-purposing
for environmental monitoring and identified technologies to
bridge existing gaps [1], [2], [9], [15], [17], [18], [37]–
[40]. The integration of micro-mobility vehicles seeks to aug-
ment existing environmental monitoring solutions, enhancing
both spatial and temporal coverage. However, certain micro-
mobility vehicles, like one-wheel models, may have size
limitations for sensor embedding. In addition, some vehicles
feature specialized infrastructure in urban settings, such as e-
bicycles with built-in racks, which can also be leveraged for
environmental monitoring purposes.

In terms of micro-mobility operations, adverse weather con-
ditions such as snow or rain can hinder vehicle performance,
preventing drivers from effectively validating measurements.
Moreover, distracting factors can also make humans ineffective
for aiding in environmental monitoring, e.g., listening podcast.
Companion vehicles (other drivers) can also reduce the atten-
tion of individuals as the drivers are more focus on the social
interaction rather to their surroundings.

Furthermore, micro-mobility drivers contributions can open
up new opportunities for citizen science and wisdom of the
crowd solutions [15]. New applications can empower non-
experts to collect data and foster learning in a community
while traversing short distances. A key limitation however is
that current citizen science methods may not directly apply
to micro-mobility vehicles, e.g., probing times via ESM differ
when considering smartphones and wearables [18]. Thus, the
use of micro-mobility requires a re-evaluation and adjustment
of existing methods for efficient implementation. For instance,
incentivizing users with free rides when contributing to data
collection or placement of the micro-mobility vehicle in a
requested location.

VI. SUMMARY AND CONCLUSIONS

In this paper, we conducted an extensive literature review
on sensor re-purposing for environmental monitoring. We then
presented a sensor-based micro-mobility framework, the main

objective of which is to improve the spatial and temporal
collection of environmental data. Additionally, our framework
highlights state-of-the-art solutions, emerging challenges, and
opportunities for using micro-mobility vehicles in environ-
mental monitoring. We concluded with a discussion about
the implications of our vision to society, citizens and urban
infrastructure.
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